首页> 外文期刊>Algorithmica >A New Lower Bound on the Maximum Number of Satisfied Clauses in Max-SAT and Its Algorithmic Applications
【24h】

A New Lower Bound on the Maximum Number of Satisfied Clauses in Max-SAT and Its Algorithmic Applications

机译:Max-SAT中满足子句的最大数目的新下界及其算法应用

获取原文
获取原文并翻译 | 示例

摘要

A pair of unit clauses is called conflicting if it is of the form (x), (x). A CNF formula is unit-conflict free (UCF) if it contains no pair of conflicting unit clauses. Lieberherr and Specker (J. ACM 28:411-421, 1981) showed that for each UCF CNF formula with m clauses we can simultaneously satisfy at least φm clauses, where φ = (5~(1/2) - 1)/2. We improve the Lieberherr-Specker bound by showing that for each UCF CNF formula F with m clauses we can find, in polynomial time, a subformula F' with m' clauses such that we can simultaneously satisfy at least φm + (1 - φ)m' + (2 - 3φ)n"/2 clauses (in F), where n" is the number of variables in F which are not in F'.We consider two parameterized versions of MAX-SAT, where the parameter is the number of satisfied clauses above the bounds m/2 and m(5~(1/2) - 1)/2. The former bound is tight for general formulas, and the later is tight for UCF formulas. Mahajan and Raman (J. Algorithms 31:335-354, 1999) showed that every instance of the first parameterized problem can be transformed, in polynomial time, into an equivalent one with at most 6k + 3 variables and 10A: clauses. We improve this to 4/k variables and (25~(1/2) + 4)k clauses. Mahajan and Raman conjectured that the second parameterized problem is fixed-parameter tractable (FPT). We show that the problem is indeed FPT by describing a polynomial-time algorithm that transforms any problem instance into an equivalent one with at most (7 + 35~(1/2))k variables. Our results are obtained using our improvement of the Lieberherr-Specker bound above.
机译:如果一对子句的形式为(x),(x),则称为冲突。如果CNF公式不包含一对冲突的单元子句,则它是无单位冲突(UCF)的。 Lieberherr and Specker(J. ACM 28:411-421,1981)表明,对于每个带有m个子句的UCF CNF公式,我们可以同时满足至少φm个子句,其中φ=(5〜(1/2)-1)/ 2 。通过证明对于带有m子句的每个UCF CNF公式F,我们可以在多项式时间内找到带有m'子句的子公式F',从而使我们可以同时满足至少φm+(1-φ),从而改善了Lieberherr-Specker界。 m'+(2-3φ)n“ / 2子句(在F中),其中n”是F中不在F'中的变量的数量。我们考虑MAX-SAT的两个参数化版本,其中参数为超出边界m / 2和m(5〜(1/2)-1)/ 2的满意子句数。前者对通用公式严格,而后者对UCF公式严格。 Mahajan和Raman(J. Algorithms 31:335-354,1999)表明,第一个参数化问题的每个实例都可以在多项式时间内转换为等效变量,最多包含6k + 3个变量和10A:子句。我们将其改进为4 / k变量和(25〜(1/2)+ 4)k子句。 Mahajan和Raman猜想第二个参数化问题是固定参数可处理(FPT)。通过描述一种多项式时间算法,该问题确实是FPT,该算法将任何问题实例转换为最多具有(7 + 35〜(1/2))k个变量的等效实例。我们的结果是通过对上面的Lieberherr-Specker进行改进而获得的。

著录项

  • 来源
    《Algorithmica》 |2012年第1期|p.56-68|共13页
  • 作者单位

    Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK;

    Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK;

    Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK;

    Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 OEX, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    maxsat; lower bound; 2-satisfiable; fixed parameter tractable; kernel;

    机译:maxsat;下界2满意固定参数易于处理;核心;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号