首页> 外文会议>Parameterized and exact computation >A New Lower Bound on the Maximum Number of Satisfied Clauses in Max-SAT and Its Algorithmic Application
【24h】

A New Lower Bound on the Maximum Number of Satisfied Clauses in Max-SAT and Its Algorithmic Application

机译:Max-SAT中最大满足子句个数的新下界及其算法应用

获取原文
获取原文并翻译 | 示例

摘要

For a formula F in conjunctive normal form (CNF), let sat(F) be the maximum number of clauses of F that can be satisfied by a truth assignment, and let m be the number of clauses in F. It is well-known that for every CNF formula F, sat(F) > m/2 and the bound is tight when F consists of conflicting unit clauses (x) and (x). Since each truth assignment satisfies exactly one clause in each pair of conflicting unit clauses, it is natural to reduce F to the unit-conflict free (UCF) form. If F is UCF, then Lieberherr and Specker (J. ACM 28(2):411-421, 1981) proved that sat(F) > φm, where φ = ( 5~(1/2) - l)/2.rnWe introduce another reduction that transforms a UCF CNF formula F into a UCF CNF formula F', which has a complete matching, i.e., there is an injective map from the variables to the clauses, such that each variable maps to a clause containing that variable or its negation. The formula F' is obtained from F by deleting some clauses and the variables contained only in the deleted clauses. We prove that sat(F) > φm + (1 - φ)(m - m') + n'(2 - 3φ)/2, where n' and m' are the number of variables and clauses in F', respectively. This improves the Lieberherr-Specker lower bound on sat(F).rnWe show that our new bound has an algorithmic application by considering the following parameterized problem: given a UCF CNF formula F decide whether sat(F) > φm + k, where k is the parameter. This problem was introduced by Mahajan and Raman (J. Algorithms 31(2):335-354, 1999) who conjectured that the problem is fixed-parameter tractable, i.e., it can be solved in time fik){nm)~0(1) for some computable function f of k only. We use the new bound to show that the problem is indeed fixed-parameter tractable by describing a polynomial-time algorithm that transforms any problem instance into an equivalent one with at most [(7 + 3 5(1/2))k] variables.
机译:对于合取范式(CNF)的公式F,令sat(F)是真值赋值可以满足的F子句的最大数目,而m是F中的子句的数目。这是众所周知的对于每个CNF公式F,当F由相互冲突的单位子句(x)和(x)组成时,sat(F)> m / 2且边界是紧密的。由于每个真值分配都在每对冲突的单元子句中恰好满足一个子句,因此将F简化为无单元冲突(UCF)形式是很自然的。如果F为UCF,则Lieberherr和Specker(J.ACM 28(2):411-421,1981)证明sat(F)>φm,其中φ=(5〜(1/2)-l)/ 2。我们引入另一种归纳法,将UCF CNF公式F转换为UCF CNF公式F',它具有完全匹配,即从变量到子句都有一个内射映射,这样每个变量都映射到包含该变量的子句或其否定通过删除一些子句和仅包含在已删除子句中的变量,可以从F获得公式F'。我们证明sat(F)>φm+(1-φ)(m-m')+ n'(2-3φ)/ 2,其中n'和m'分别是F'中的变量和子句数。这改善了sat(F)的Lieberherr-Specker下界。rn我们通过考虑以下参数化问题,证明我们的新界具有算法应用:给定UCF CNF公式F来确定sat(F)>φm+ k,其中k是参数。这个问题是由Mahajan和Raman(J. Algorithms 31(2):335-354,1999)提出的,他们推测该问题是固定参数易处理的,即可以在时间上解决(fik){nm)〜0( 1)仅适用于k的某些可计算函数f。通过描述一种多项式时间算法,该算法将任何问题实例转换为最多具有[[7 + 3 5(1/2)k]个变量的等价实例,我们使用新界限来说明问题确实是固定参数可处理的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号