首页> 外文期刊>Algorithmica >An Approximation Algorithm for the Tree t-Spanner Problem on Unweighted Graphs via Generalized Chordal Graphs
【24h】

An Approximation Algorithm for the Tree t-Spanner Problem on Unweighted Graphs via Generalized Chordal Graphs

机译:广义Chordal图的无权图上树t展问题的一种近似算法

获取原文
获取原文并翻译 | 示例

摘要

A spanning tree T of a graph G is called a tree t-spanner of G if the distance between every pair of vertices in T is at most t times their distance in G. In this paper, we present an algorithm which constructs for an n-vertex m-edge unweighted graph G: 1. a tree (2「log_2n」)-spanner in O(m log n) time, if G is a chordal graph (i.e., every induced cycle of G has length 3); 2. a tree (2ρ「log_2 n」)-spanner in O(mn log~2 n) time or a tree (12ρ「log_2 n」)-spanner in O(m log n) time, if G is a graph admitting a Robertson-Seymour's tree-decomposition with bags of radius at most p in G; and 3. a tree (2「t/2」「log_2 n」)-spanner in O(mn log~2 n) time or a tree (6t「log_2n」)-spanner in O(m log n) time, if G is an arbitrary graph admitting a tree t-spanner. For the latter result we use a new necessary condition for a graph to have a tree t-spanner: if a graph G has a tree t-spanner, then G admits a Robertson-Seymour's tree-decomposition with bags of radius at most「t/2」 and diameter at most t in G.
机译:如果图T中每对顶点之间的距离最多是它们在G中的距离的t倍,则图G的生成树T称为G的树t跨度。在本文中,我们提出了一种构造n的算法-顶点m边未加权图G:1.如果G是弦图(即,每个G的诱导周期的长度为3),则树在(m log n)时间内以O(m log n)的时间生成树(2“ log_2n”); 2.如果G是一个允许图表示的图,则以O(mn log〜2 n)时间表示一棵树(2ρ“ log_2 n”)-或以O(m log n)时间表示一棵树(12ρ“ log_2 n”)-表示。罗伯逊·西摩(Robertson-Seymour)的树分解,在G中半径最大为p的袋子;和3.如果是O(mn log〜2 n)时间的树(2「t / 2」「log_2 n」)-spanner或如果是O(m log n)时间的树(6t“ log_2n”)-spanner G是允许树t跨度的任意图。对于后一个结果,我们使用新的必要条件使图具有树t跨度:如果图G有树t跨度,则G接受罗伯逊·西摩的树分解,其半径最大为t的袋子/ 2'',直径最大为g。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号