首页> 外文期刊>Algorithmica >An Improved Approximation Algorithm for the Minimum Cost Subset k-Connected Subgraph Problem
【24h】

An Improved Approximation Algorithm for the Minimum Cost Subset k-Connected Subgraph Problem

机译:最小成本子集k-连通子图问题的一种改进的近似算法

获取原文
获取原文并翻译 | 示例

摘要

The minimum cost subset k-connected subgraph problem is a cornerstone problem in the area of network design with vertex connectivity requirements. In this problem, we are given a graph G=(V,E) with costs on edges and a set of terminals TaS dagger V. The goal is to find a minimum cost subgraph such that every pair of terminals are connected by k openly (vertex) disjoint paths. In this paper, we present an approximation algorithm for the subset k-connected subgraph problem which improves on the previous best approximation guarantee of O(k (2)logk) by Nutov (ACM Trans. Algorithms 9(1):1, 2012). Our approximation guarantee, alpha(|T|), depends upon the number of terminals: So, when the number of terminals is large enough, the approximation guarantee improves significantly. Moreover, we show that, given an approximation algorithm for |T|=k, we can obtain almost the same approximation guarantee for any instances with |T|> k. This suggests that the hardest instances of the problem are when |T|a parts per thousand k.
机译:最小成本子集k连接子图问题是具有顶点连通性要求的网络设计领域的基石问题。在这个问题中,我们得到了一个G =(V,E)的图,该图的边上有成本,并且有一组终端TaS匕首V.目标是找到一个最小成本子图,使得每对终端都通过k公开连接(顶点)不相交的路径。在本文中,我们为子集k连通子图问题提供了一种近似算法,该算法对Nutov先前对O(k(2)logk)的最佳近似保证有所改进(ACM Trans。Algorithms 9(1):1,2012) 。我们的近似保证alpha(| T |)取决于端子数:因此,当端子数足够大时,近似保证会大大提高。而且,我们表明,给定| T | = k的近似算法,对于| T |> k的任何实例,我们都可以获得几乎相同的近似保证。这表明该问题最困难的情况是| T | a千分之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号