首页> 外文期刊>Theory of computing systems >Improved Approximation Algorithms for Minimum Cost Node-Connectivity Augmentation Problems
【24h】

Improved Approximation Algorithms for Minimum Cost Node-Connectivity Augmentation Problems

机译:最小成本节点连接性扩充问题的改进的近似算法

获取原文
获取原文并翻译 | 示例

摘要

Abstract Let κ ~( G )( s , t ) denote the maximum number of pairwise internally disjoint st -paths in a graph G = ( V , E ). For a set T ⊆ V $T subseteq V$ of terminals, G is k - T -connected if κ ~( G )( s , t ) ≥ k for all s , t ∈ T ; if T = V then G is k -connected. Given a root node s , G is k - ( T , s )-connected if κ ~( G )( t , s ) ≥ k for all t ∈ T . We consider the corresponding min-cost connectivity augmentation problems, where we are given a graph G = ( V , E ) of connectivity k , and an additional edge set Ê $hat E$ on V with costs. The goal is to compute a minimum cost edge set J ⊆ Ê $J subseteq hat {E}$ such that G ∪ J $G cup J$ has connectivity k + 1. For the k - T - Connectivity Augmentation problem when Ê $hat {E}$ is an edge set on T we obtain ratio O ln | T | | T | − k $Oleft (ln frac {|T|}{|T|-k}right )$ , improving the ratio O | T | | T | − k ⋅ ln | T | | T | − k $Oleft (frac {|T|}{|T|-k} cdot ln frac {|T|}{|T|-k}right )$ of Nutov (Combinatorica, 34 (1), 95–114, 2014). For the k -Connectivity Augmentation problem we obtain the following approximation ratios. For n ≥ 3 k − 5, we obtain ratio 3 for directed graphs and 4 for undirected graphs, improving the previous ratio 5 of Nutov (Combinatorica, 34 (1), 95–114, 2014). For directed graphs and k = 1, or k = 2 and n odd, we further improve to 2.5 the previous ratios 3 and 4, respectively. For the undirected 2-( T , s )- Connectivity Augmentation problem we achieve ratio 4 2 3 $4frac {2}{3}$ , improving the previous best ratio 12 of Nutov (ACM Trans. Algorithms, 9 (1), 1, 2014). For the special case when all the edges in Ê $hat E$ are incident to s , we give a polynomial time algorithm, improving the ratio 4 17 30 $4frac {17}{30}$ of Kortsarz and Nutov, (2015) and Nutov (Algorithmica, 63 (1-2), 398–410, 2012) for this variant.
机译:摘要令κ〜(G)(s,t)表示图G =(V,E)中成对的内部不相交的st路径的最大数目。对于终端的集合T⊆V $ Tsubseteq V $,如果对于所有s,t∈T,如果κ〜(G)(s,t)≥k,则G是k-T连接的。如果T = V,则G连接k。给定根节点s,如果所有t∈T的κ〜(G)(t,s)≥k,则G为k-(T,s)连接。我们考虑相应的最小成本连通性增加问题,在这里我们得到连通性k的图G =(V,E),并且在V上具有成本的附加边集Ê$ hat E $。目标是计算最小成本边集JÊ$ J子集帽子{E} $,使得G∪J $ G杯J $的连通性为k +1。对于k-T-当when $ hat时的连通性增强问题{E} $是在T上设置的边,我们得到比率O ln | T | | T | − k $ Oleft(ln frac {| T |} {| T | -k} right)$,提高比率O | T | | T | − k⋅ln | T | | T | − Nutov的$ Oleft(frac {| T |} {| T | -k} cdot ln frac {| T |} {| T | -k} right)$(Combinatorica,34(1),95–114, 2014)。对于k-连通性增强问题,我们获得以下近似比率。对于n≥3 k-5,我们得到有向图的比率3和无向图的比率4,从而改善了Nutov的先前比率5(Combinatorica,34(1),95–114,2014年)。对于有向图,k = 1,或k = 2和n奇数,我们分别将先前的比率3和4分别提高到2.5。对于无向2-(T,s)-连接性增强问题,我们获得比率4 2 3 $ 4frac {2} {3} $,提高了Nutov的先前最佳比率12(ACM Trans。Algorithms,9(1),1 ,2014)。对于特殊情况,当Ê$ hat E $中的所有边都入射到s时,我们给出了多项式时间算法,提高了Kortsarz和Nutov(2015)的比率4 17 30 $ 4frac {17} {30} $ Nutov(Algorithmica,63(1-2),398-410,2012)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号