首页> 外文期刊>Algorithmica >Identification, Location-Domination and Metric Dimension on Interval and Permutation Graphs. II. Algorithms and Complexity
【24h】

Identification, Location-Domination and Metric Dimension on Interval and Permutation Graphs. II. Algorithms and Complexity

机译:间隔图和置换图上的标识,位置控制和度量维。二。算法与复杂度

获取原文
获取原文并翻译 | 示例

摘要

We consider the problems of finding optimal identifying codes, (open) locating-dominating sets and resolving sets (denoted Identifying Code, (Open) Open Locating-Dominating Set and Metric Dimension) of an interval or a permutation graph. In these problems, one asks to distinguish all vertices of a graph by a subset of the vertices, using either the neighbourhood within the solution set or the distances to the solution vertices. Using a general reduction for this class of problems, we prove that the decision problems associated to these four notions are NP-complete, even for interval graphs of diameter 2 and permutation graphs of diameter 2. While Identifying Code and (Open) Locating-Dominating Set are trivially fixed-parameter-tractable when parameterized by solution size, it is known that in the same setting Metric Dimension is W[2]-hard. We show that for interval graphs, this parameterization of Metric Dimension is fixed-parameter-tractable.
机译:我们考虑以下问题:找到间隔或排列图的最佳识别码,(开放)定位主导集和解析集(表示识别码,(开放)开放定位主导集和度量维度)。在这些问题中,人们要求使用解集内的邻域或到解顶点的距离,通过子集的顶点来区分图的所有顶点。通过对此类问题的一般归纳,我们证明了与这四个概念相关的决策问题都是NP完全的,即使对于直径2的间隔图和直径2的置换图也是如此。同时识别代码和(开放式)定位控制通过解大小对参数集进行参数化时,它几乎是固定参数可处理的,众所周知,在同一设置中,度量维数是W [2] -hard。我们显示对于间隔图,度量维的此参数化是固定参数可处理的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号