首页> 外文期刊>Algorithmica >Algorithms Parameterized by Vertex Cover and Modular Width, Through Potential Maximal Cliques
【24h】

Algorithms Parameterized by Vertex Cover and Modular Width, Through Potential Maximal Cliques

机译:通过潜在的最大集团由顶点覆盖率和模块宽度参数化的算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we give upper bounds on the number of minimal separators and potential maximal cliques of graphs w.r.t. two graph parameters, namely vertex cover () and modular width (). We prove that for any graph, the number of its minimal separators is and , and the number of potential maximal cliques is and , and these objects can be listed within the same running times (The notation suppresses polynomial factors in the size of the input). Combined with known applications of potential maximal cliques, we deduce that a large family of problems, e.g., Treewidth, Minimum Fill-in, Longest Induced Path, Feedback vertex set and many others, can be solved in time or . With slightly different techniques, we prove that the Treedepth problem can be also solved in single-exponential time, for both parameters.
机译:在本文中,我们给出了图的最小分隔符和潜在最大集团数的上限。两个图形参数,即顶点覆盖率()和模数宽度()。我们证明对于任何图,其最小分隔符的数量为和,潜在最大集团的数量为和,并且可以在相同的运行时间内列出这些对象(该符号抑制了输入大小的多项式因子) 。结合潜在的最大集团的已知应用程序,我们得出结论,可以及时解决一系列大问题,例如树宽,最小填充,最长诱导路径,反馈顶点集等。通过稍有不同的技术,我们证明了对于两个参数,Treedepth问题也可以在单指数时间内解决。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号