首页> 中文期刊> 《计算机应用》 >基于顶点冲突学习的最大公共子图算法

基于顶点冲突学习的最大公共子图算法

     

摘要

针对最大公共子图(MCS)的传统分支策略依赖于图的静态属性,缺少学习历史搜索信息的问题,提出了基于顶点冲突学习的分支策略.首先,把上界的减少值作为分支点完成匹配动作的奖励;其次,由于当最优解被更新时,得到的最优解是分支点不断推理产生的结果,因此给予在完整的搜索路径上的分支点适当的奖励,从而强化这些顶点对搜索的积极作用;最后,设计了匹配动作的价值函数,并选择具有最大累计奖励的顶点作为新的分支点.在McSplit算法基础上,提出了糅合新分支策略的McSplitRLR算法.实验结果表明,除去均可以被所有对比算法在10 s之内解决的简单算例,在相同机器和求解限制时间条件下,相较当前先进的算法McSplit、McSplitSBS,McSplitRLR分别多解决了109、33个困难算例,求解率分别提高了5.6%、1.6%.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号