首页> 外文期刊>Algorithmica >Analytic Combinatorics of Lattice Paths with Forbidden Patterns, the Vectorial Kernel Method, and Generating Functions for Pushdown Automata
【24h】

Analytic Combinatorics of Lattice Paths with Forbidden Patterns, the Vectorial Kernel Method, and Generating Functions for Pushdown Automata

机译:具有禁止模式的格形路径的解析组合,矢量核方法和下推自动机的生成函数

获取原文
获取原文并翻译 | 示例

摘要

In this article we develop a vectorial kernel method-a powerful method which solves in a unified framework all the problems related to the enumeration of words generated by a pushdown automaton. We apply it for the enumeration of lattice paths that avoid a fixed word (a pattern), or for counting the occurrences of a given pattern. We unify results from numerous articles concerning patterns like peaks, valleys, humps, etc., in Dyck and Motzkin paths. This refines the study by Banderier and Flajolet from 2002 on enumeration and asymptotics of lattice paths: we extend here their results to pattern-avoiding walks/bridges/meanders/excursions. We show that the autocorrelation polynomial of this forbidden pattern, as introduced by Guibas and Odlyzko in 1981 in the context of rational languages, still plays a crucial role for our algebraic languages. En passant, our results give the enumeration of some classes of self-avoiding walks, and prove several conjectures from the On-Line Encyclopedia of Integer Sequences. Finally, we also give the trivariate generating function (length, final altitude, number of occurrences of the pattern p), and we prove that the number of occurrences is normally distributed and linear with respect to the length of the walk: this is what Flajolet and Sedgewick call an instance of Borges's theorem.
机译:在本文中,我们开发了一种矢量核方法,该方法是一种功能强大的方法,可以在统一框架中解决与下推自动机生成的单词枚举有关的所有问题。我们将其用于避免固定单词(模式)的晶格路径枚举,或用于计算给定模式的出现次数。我们统一了众多有关Dyck和Motzkin路径中峰,谷,峰等形态的文章的结果。这完善了Banderier和Flajolet从2002年开始的关于晶格路径的列举和渐近性的研究:在这里,我们将它们的结果扩展到避免模式的步行/桥梁/弯道/远足。我们表明,由Guibas和Odlyzko于1981年在有理语言的背景下引入的这种禁止模式的自相关多项式对于我们的代数语言仍然起着至关重要的作用。顺便说一句,我们的研究结果列举了一些自助回避类,并从整数序列在线百科全书中证明了一些猜想。最后,我们还给出了三变量生成函数(长度,最终高度,模式p的出现次数),并证明了出现次数相对于步行长度呈正态分布且呈线性:这就是Flajolet塞奇威克(Sedgewick)将其称为博尔赫斯定理的一个实例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号