首页> 外文期刊>Algorithmica >An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams
【24h】

An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams

机译:高阶抽象Voronoi图的有效随机算法

获取原文
获取原文并翻译 | 示例

摘要

Given a set of n sites in the plane, the order-k Voronoi diagram is a planar subdivision such that all points in a region share the same k nearest sites. The order-k Voronoi diagram arises for the k-nearest-neighbor problem, and there has been a lot of work for point sites in the Euclidean metric. In this paper, we study order-k Voronoi diagrams defined by an abstract bisecting curve system that satisfies several practical axioms, and thus our study covers many concrete order-k Voronoi diagrams. We propose a randomized incremental construction algorithm that runs in O(k(n-k)log2n+nlog3n) steps, where O(k(n-k)) is the number of faces in the worst case. This result applies to disjoint line segments in the Lp norm, convex polygons of constant size, points in the Karlsruhe metric, and so on. In fact, a running time with a polylog factor to the number of faces was only achieved for point sites in the L1 or Euclidean metric before.
机译:给定平面中的n个位置,则k阶Voronoi图是一个平面细分,以使一个区域中的所有点共享相同的k个最近的位置。 k阶Voronoi图是由k最近邻问题引起的,并且在欧几里得度量中对点站点进行了大量工作。在本文中,我们研究由满足多个实际公理的抽象平分曲线系统定义的k阶Voronoi图,因此,我们的研究涵盖了许多具体的k阶Voronoi图。我们提出了一种以O(k(n-k)log2n + nlog3n)步骤运行的随机增量构造算法,其中O(k(n-k))是最坏情况下的人脸数量。此结果适用于Lp范数中的不相交的线段,大小不变的凸多边形,卡尔斯鲁厄度量中的点等等。实际上,以前只有在L1或欧几里德度量标准中的点位置才能获得具有面数数量的多对数因子的运行时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号