首页> 外文期刊>Algorithmica >An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams
【24h】

An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams

机译:高阶抽象Voronoi图的高效随机算法

获取原文
获取原文并翻译 | 示例

摘要

Given a set of n sites in the plane, the order-k Voronoi diagram is a planar subdivision such that all points in a region share the same k nearest sites. The order-k Voronoi diagram arises for the k-nearest-neighbor problem, and there has been a lot of work for point sites in the Euclidean metric. In this paper, we study order-k Voronoi diagrams defined by an abstract bisecting curve system that satisfies several practical axioms, and thus our study covers many concrete order-k Voronoi diagrams. We propose a randomized incremental construction algorithm that runs in O(k(n-k)log2n+nlog3n) steps, where O(k(n-k)) is the number of faces in the worst case. This result applies to disjoint line segments in the Lp norm, convex polygons of constant size, points in the Karlsruhe metric, and so on. In fact, a running time with a polylog factor to the number of faces was only achieved for point sites in the L1 or Euclidean metric before.
机译:给定飞机中的一组N个站点,Order-K Voronoi图是平面细分,使得区域中的所有点共享相同的k最近站点。 Q-Indight邻居问题出现了Order-K Voronoi图,欧几里德市度量标准中有很多工作。在本文中,我们研究了由抽象的分数曲线系统定义的订单-K Voronoi图,这些曲线系统满足了几种实际公理,因此我们的研究涵盖了许多具体的秩序-K Voronoi图。我们提出了一种随机增量建设算法,其在O(k(n-k)log2n + nlog3n)步骤中,其中o(k(n-k))是最坏情况下的面部。此结果适用于LP规范中的脱节线段,恒定大小的凸多边形,Karlsruhe度量标准点等。实际上,仅在L1或欧几里德度量中的点站点才能实现与面部数量的跳跃因子的运行时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号