首页> 外文期刊>Affective Computing, IEEE Transactions on >Dynamic Pose-Robust Facial Expression Recognition by Multi-View Pairwise Conditional Random Forests
【24h】

Dynamic Pose-Robust Facial Expression Recognition by Multi-View Pairwise Conditional Random Forests

机译:多视角成对条件随机森林的动态姿态鲁棒表情识别

获取原文
获取原文并翻译 | 示例

摘要

Automatic facial expression classification (FER) from videos is a critical problem for the development of intelligent human-computer interaction systems. Still, it is a challenging problem that involves capturing high-dimensional spatio-temporal patterns describing the variation of one's appearance over time. Such representation undergoes great variability of the facial morphology and environmental factors as well as head pose variations. In this paper, we use Conditional Random Forests to capture low-level expression transition patterns. More specifically, heterogeneous derivative features (e.g., feature point movements or texture variations) are evaluated upon pairs of images. When testing on a video frame, pairs are created between this current frame and previous ones and predictions for each previous frame are used to draw trees from Pairwise Conditional Random Forests (PCRF) whose pairwise outputs are averaged over time to produce robust estimates. Moreover, PCRF collections can also be conditioned on head pose estimation for multi-view dynamic FER. As such, our approach appears as a natural extension of Random Forests for learning spatio-temporal patterns, potentially from multiple viewpoints. Experiments on popular datasets show that our method leads to significant improvements over standard Random Forests as well as state-of-the-art approaches on several scenarios, including a novel multi-view video corpus generated from a publicly available database.
机译:视频的自动面部表情分类(FER)是开发智能人机交互系统的关键问题。但是,这仍然是一个具有挑战性的问题,涉及捕获描述一个人的外观随时间变化的高维时空模式。这种表示经历了面部形态和环境因素以及头部姿势变化的极大变化。在本文中,我们使用条件随机森林来捕获低级表达转换模式。更具体地,在成对的图像上评估异质导数特征(例如,特征点移动或纹理变化)。在视频帧上进行测试时,将在当前帧和先前帧之间创建对,并使用每个先前帧的预测从成对条件随机森林(PCRF)中绘制树,成对条件随机森林(PCRF)的成对输出随时间平均以产生可靠的估计。此外,PCRF收集也可以以多视角动态FER的头部姿势估计为条件。因此,我们的方法似乎是随机森林的自然延伸,可以从多种角度学习时空模式。在流行数据集上进行的实验表明,我们的方法与标准的随机森林相比,以及在几种情况下的最新方法方面都取得了显着改进,其中包括从可公开获取的数据库中生成的新颖的多视图视频语料库。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号