首页> 外文期刊>Aerospace science and technology >Design of an adaptive Kalman filter to eliminate measurement faults of a laser rangefinder used in the UAV system
【24h】

Design of an adaptive Kalman filter to eliminate measurement faults of a laser rangefinder used in the UAV system

机译:自适应卡尔曼滤波器的设计,可消除无人机系统中使用的激光测距仪的测量故障

获取原文
获取原文并翻译 | 示例

摘要

The Kalman filter is a valued method of signals filtration having the possibility of a sensors fusion, which is commonly applied in aerospace technology. Mainly, it eliminates random noises, improves the accuracy of a measurement system and their resistance to unexpected faults. Small unmanned aerial vehicles (UAV) are a challengeable area for various applications of the Kalman filter, because their high dynamics makes them highly sensitive to external disturbances acting on the on-board sensors. The paper discusses an application idea of the Kalman filter, whose purpose is to reduce the quantity of accidental incorrect measurements reported by a miniature laser rangefinder fixed to the UAVs wing. To verify the filtration effectiveness, real distance measurements recorded during real flights were applied. The results compare two approaches: an optimization using a reference signal from the second sensor mounted to the same UAV, and an adaptation of the covariance matrix R based on innovation. We can observe that the measurements of the laser rangefinder are corrected significantly, especially for the adaptation method, what is visible as the reduced amount of the incorrect distance measurements. Hence, the reliable detection and localization of an obstacle can be achieved by the usage of the miniature laser rangefinder.
机译:卡尔曼滤波器是信号滤波的一种有价值的方法,具有传感器融合的可能性,通常在航空航天技术中应用。主要是,它消除了随机噪声,提高了测量系统的精度及其对意外故障的抵抗能力。对于卡尔曼滤波器的各种应用而言,小型无人机(UAV)是一个具有挑战性的领域,因为它们的高动态特性使其对作用在机载传感器上的外部干扰高度敏感。本文讨论了卡尔曼滤波器的应用思想,其目的是减少固定在无人机机翼上的微型激光测距仪报告的意外不正确测量的数量。为了验证过滤效果,应用了在真实飞行中记录的真实距离测量值。结果比较了两种方法:使用来自安装在同一UAV上的第二个传感器的参考信号进行优化,以及基于创新对协方差矩阵R进行自适应。我们可以观察到激光测距仪的测量值得到了显着校正,尤其是对于自适应方法而言,这是减少的不正确距离测量值。因此,可以通过使用微型激光测距仪来实现对障碍物的可靠检测和定位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号