首页> 外文期刊>Aerospace science and technology >Multi-UAVs tracking target in urban environment by model predictive control and Improved Grey Wolf Optimizer
【24h】

Multi-UAVs tracking target in urban environment by model predictive control and Improved Grey Wolf Optimizer

机译:通过模型预测控制和改进的灰狼优化器对城市环境中的多无人机进行跟踪

获取原文
获取原文并翻译 | 示例

摘要

In this paper, based on the Model Predictive Control (MPC) and Improved Grey Wolf Optimizer (IGWO), a hybrid method is proposed to plan the optimal trajectories of multi-UAVs for target tracking in urban environment. Firstly, the target tracking problem in urban environment is modeled detailedly by formulating the visibility region, the sensor coverage area, the restricted region, the space constraints, etc. Based on the model of target tracking, the centralized MPC method is then adopted as the framework to obtain the trajectories of UAVs in real time, the objective of which is to optimize tracking performance under various constraints. In consideration of the computational complexity of this problem, IGWO, a novel intelligent algorithm with the advantages of good stability and strong search ability is utilized to solve the MPC formulation. It imitates the social hierarchy and predatory strategy of wolf pack, and some improvement strategies are also introduced e.g. the individual memory and the principle of survival of the fittest. Finally, the proposed method is demonstrated in a simulated urban environment. The simulation results show the effectiveness of the proposed hybrid method to solve target tracking problem. (C) 2016 Elsevier Masson SAS. All rights reserved.
机译:本文基于模型预测控制(MPC)和改进的灰狼优化器(IGWO),提出了一种混合方法来规划用于城市环境下目标跟踪的多无人机的最优轨迹。首先,通过制定可见性区域,传感器覆盖区域,限制区域,空间约束等,对城市环境中的目标跟踪问题进行详细建模。在目标跟踪模型的基础上,采用集中式MPC方法作为目标跟踪问题。实时获取无人机轨迹的框架,其目的是在各种约束条件下优化跟踪性能。考虑到该问题的计算复杂性,IGWO是一种具有良好稳定性和强大搜索能力的新型智能算法,用于求解MPC公式。它模仿了狼群的社会等级制度和掠夺性策略,并介绍了一些改进策略,例如个人记忆和适者生存的原则。最后,该方法在模拟城市环境中得到了证明。仿真结果表明了所提混合方法解决目标跟踪问题的有效性。 (C)2016 Elsevier Masson SAS。版权所有。

著录项

  • 来源
    《Aerospace science and technology》 |2016年第8期|131-143|共13页
  • 作者单位

    Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China|Beihang Univ, Sci & Technol Aircraft Control Lab, Beijing 100191, Peoples R China;

    Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China|Beihang Univ, Sci & Technol Aircraft Control Lab, Beijing 100191, Peoples R China;

    Beihang Univ, Sch Automat Sci & Elect Engn, Beijing 100191, Peoples R China|Beihang Univ, Sci & Technol Aircraft Control Lab, Beijing 100191, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Model Predictive Control (MPC); Improved Grey Wolf Optimizer (IGWO); Multi-UAVs; Target tracking; Urban environment;

    机译:模型预测控制(MPC);改进的灰狼优化器(IGWO);多无人机;目标跟踪;城市环境;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号