首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >A Non-linear Model Predictive Control Based on Grey-Wolf Optimization Using Least-Square Support Vector Machine for Product Concentration Control in l-Lysine Fermentation
【2h】

A Non-linear Model Predictive Control Based on Grey-Wolf Optimization Using Least-Square Support Vector Machine for Product Concentration Control in l-Lysine Fermentation

机译:基于灰狼优化的非线性模型预测控制使用最小二乘支持向量机在L-赖氨酸发酵中的产品浓度控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

l-Lysine is produced by a complex non-linear fermentation process. A non-linear model predictive control (NMPC) scheme is proposed to control product concentration in real time for enhancing production. However, product concentration cannot be directly measured in real time. Least-square support vector machine (LSSVM) is used to predict product concentration in real time. Grey-Wolf Optimization (GWO) algorithm is used to optimize the key model parameters (penalty factor and kernel width) of LSSVM for increasing its prediction accuracy (GWO-LSSVM). The proposed optimal prediction model is used as a process model in the non-linear model predictive control to predict product concentration. GWO is also used to solve the non-convex optimization problem in non-linear model predictive control (GWO-NMPC) for calculating optimal future inputs. The proposed GWO-based prediction model (GWO-LSSVM) and non-linear model predictive control (GWO-NMPC) are compared with the Particle Swarm Optimization (PSO)-based prediction model (PSO-LSSVM) and non-linear model predictive control (PSO-NMPC) to validate their effectiveness. The comparative results show that the prediction accuracy, adaptability, real-time tracking ability, overall error and control precision of GWO-based predictive control is better compared to PSO-based predictive control.
机译:L-赖氨酸由复杂的非线性发酵过程生产。提出了一种非线性模型预测控制(NMPC)方案以实时控制产品浓度以提高生产。然而,产品浓度不能实时直接测量。最小二乘支持向量机(LSSVM)用于实时预测产品浓度。灰狼优化(GWO)算法用于优化LSSVM的关键模型参数(惩罚系数和核宽度),以提高其预测精度(GWO-LSSVM)。所提出的最优预测模型用作非线性模型预测控制中的过程模型,以预测产品浓度。 GWO还用于解决非线性模型预测控制(GWO-NMPC)中的非凸优化问题,用于计算最佳未来输入。将所提出的基于GWO的预测模型(GWO-LSSVM)和非线性模型预测控制(GWO-NMPC)与基于粒子群优化(PSO)的预测模型(PSO-LSSVM)和非线性模型预测控制进行比较(PSO-NMPC)验证其有效性。比较结果表明,与基于PSO的预测控制相比,基于GWO的预测控制的预测准确性,适应性,实时跟踪能力,总体误差和控制精度更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号