首页> 外文期刊>Advanced engineering informatics >Building contextual classifiers by integrating fuzzy rule based classification technique and k-nn method for credit scoring
【24h】

Building contextual classifiers by integrating fuzzy rule based classification technique and k-nn method for credit scoring

机译:通过结合基于模糊规则的分类技术和k-nn方法进行信用评分,构建上下文分类器

获取原文
获取原文并翻译 | 示例

摘要

Credit-risk evaluation is a very challenging and important problem in the domain of financial analysis. Many classification methods have been proposed in the literature to tackle this problem. Statistical and neural network based approaches are among the most popular paradigms. However, most of these methods produce so-called "hard" classifiers, those generate decisions without any accompanying confidence measure. In contrast, "soft" classifiers, such as those designed using fuzzy set theoretic approach; produce a measure of support for the decision (and also alternative decisions) that provides the analyst with greater insight. In this paper, we propose a method of building credit-scoring models using fuzzy rule based classifiers. First, the rule base is learned from the training data using a SOM based method. Then the fuzzy k-nn rule is incorporated with it to design a contextual classifier that integrates the context information from the training set for more robust and qualitatively better classification. Further, a method of seamlessly integrating business constraints into the model is also demonstrated.
机译:在财务分析领域,信用风险评估是一个非常具有挑战性的重要问题。在文献中已经提出了许多分类方法来解决这个问题。基于统计和神经网络的方法是最流行的范例。但是,大多数这些方法都会产生所谓的“硬”分类器,这些分类器无需任何相关的置信度即可生成决策。相反,“软”分类器,例如使用模糊集理论方法设计的分类器;为决策(以及其他决策)提供支持,从而为分析师提供更深入的洞察力。本文提出了一种基于模糊规则的分类器建立信用评分模型的方法。首先,使用基于SOM的方法从训练数据中学习规则库。然后,将模糊k-nn规则与之合并以设计上下文分类器,该上下文分类器将来自训练集的上下文信息进行集成,以实现更健壮和定性更好的分类。此外,还展示了将业务约束无缝集成到模型中的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号