首页> 外文期刊>Advanced engineering informatics >Input variable selection in time-critical knowledge integration applications: A review, analysis, and recommendation paper
【24h】

Input variable selection in time-critical knowledge integration applications: A review, analysis, and recommendation paper

机译:时间紧迫的知识集成应用程序中的输入变量选择:评论,分析和建议论文

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this research is twofold: first, to undertake a thorough appraisal of existing Input Variable Selection (IVS) methods within the context of time-critical and computation resource-limited dimensionality reduction problems; second, to demonstrate improvements to, and the application of, a recently proposed time-critical sensitivity analysis method calied EventTracker to an environment science industrial use-case, i.e., sub-surface drilling. Producing time-critical accurate knowledge about the state of a system (effect) under computational and data acquisition (cause) constraints is a major challenge, especially if the knowledge required is critical to the system operation where the safety of operators or integrity of costly equipment is at stake. Understanding and interpreting, a chain of interrelated events, predicted or unpredicted, that may or may not result in a specific state of the system, is the core challenge of this research. The main objective is then to identify which set of input data signals has a significant impact on the set of system state information (i.e. output). Through a cause-effect analysis technique, the proposed technique supports the filtering of unsolicited data that can otherwise clog up the communication and computational capabilities of a standard supervisory control and data acquisition system. The paper analyzes the performance of input variable selection techniques from a series of perspectives. It then expands the categorization and assessment of sensitivity analysis methods in a structured framework that takes into account the relationship between inputs and outputs, the nature of their time series, and the computational effort required. The outcome of this analysis is that established methods have a limited suitability for use by time-critical variable selection applications. By way of a geological drilling monitoring scenario, the suitability of the proposed EventTracker Sensitivity Analysis method for use in high volume and time critical input variable selection problems is demonstrated.
机译:这项研究的目的是双重的:首先,在时间紧迫和计算资源有限的降维问题的背景下,对现有的输入变量选择(IVS)方法进行全面评估;其次,展示对基于事件跟踪器的最近提出的时间敏感度分析方法的改进和在环境科学工业用例(即地下钻探)中的应用。在计算和数据获取(原因)约束下,产生关于系统状态(效果)的时间紧迫的准确知识是一项重大挑战,尤其是如果所需的知识对于操作员安全或昂贵设备完整性的系统操作至关重要时,尤其如此危在旦夕。理解和解释,可能会或可能不会导致系统特定状态的一系列相互关联的事件(预测的或未预测的)是本研究的核心挑战。然后,主要目的是确定哪组输入数据信号对这组系统状态信息(即输出)有重大影响。通过因果分析技术,所提出的技术支持对不请自来的数据进行过滤,否则可能会阻塞标准监督控制和数据采集系统的通信和计算能力。本文从一系列角度分析了输入变量选择技术的性能。然后,它在结构化框架中扩展了敏感性分析方法的分类和评估,该框架考虑了输入和输出之间的关系,其时间序列的性质以及所需的计算工作量。该分析的结果是,已建立的方法对于时间关键型变量选择应用程序的适用性有限。通过地质钻探监控方案,证明了所提出的EventTracker灵敏度分析方法适用于大批量和时间关键的输入变量选择问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号