首页> 外文期刊>ACM Transactions on Spatial Algorithms and Systems >Indoor Quality-of-position Visual Assessment Using Crowdsourced Fingerprint Maps
【24h】

Indoor Quality-of-position Visual Assessment Using Crowdsourced Fingerprint Maps

机译:使用众群指纹地图室内定位质量视觉评估

获取原文
获取原文并翻译 | 示例

摘要

Internet-based Indoor Navigation (UN) architectures organize signals collected by crowdsourcers in Fingerprint Maps (FMs) to improve localization given that satellite-based technologies do not operate accurately in indoor spaces where people spend 80%-90% of their time. In this article, we study the Quality-of-Position (QoP) assessment problem, which aims to assess in an offline manner the localization accuracy that can be obtained by a user that aims to localize using a FM. Particularly, our proposed ACCES framework uses a generic interpolation method using Gaussian Processes (GP), upon which a navigability score at any location is derived using the Cramer-Rao Lower Bound (CRLB). We derive adaptations of ACCES for both Magnetic and Wi-Fi data and implement a complete visual assessment environment, which has been incorporated in the Anyplace open-source UN. Our experimental evaluation of ACCES in Anyplace suggests the high qualitative and quantitative benefits of our propositions.
机译:基于互联网的室内导航(UN)架构组织了众包在指纹地图(FMS)中收集的信号,以改善本地化,因为卫星的技术在室内空间中没有准确运行,人们花费80%-90%的时间。 在本文中,我们研究了定位质量(QOP)评估问题,该问题旨在以离线方式评估,其用户可以使用FM定位的用户可以获得的本地化准确性。 特别是,我们所提出的Acces框架使用使用高斯过程(GP)的通用插值方法,在该过程中,使用Cramer-Rao下限(CRLB)导出任何位置的导航性得分。 我们导出了磁性和Wi-Fi数据的Acces的适应,并实施完整的视觉评估环境,该环境已被纳入任何地方开源联合国。 我们对任何地方的Acces的实验评估表明了我们主张的高质量和量化效益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号