首页> 外文期刊>ACM transactions on software engineering and methodology >An Active Learning Approach for Improving the Accuracy of Automated Domain Model Extraction
【24h】

An Active Learning Approach for Improving the Accuracy of Automated Domain Model Extraction

机译:一种主动学习的方法,以提高自动域模型提取的准确性

获取原文
获取原文并翻译 | 示例

摘要

Domain models are a useful vehicle for making the interpretation and elaboration of natural-language requirements more precise. Advances in natural-language processing (NLP) have made it possible to automatically extract from requirements most of the information that is relevant to domain model construction. However, alongside the relevant information, NLP extracts from requirements a significant amount of information that is superfluous (not relevant to the domain model). Our objective in this article is to develop automated assistance for filtering the superfluous information extracted by NLP during domain model extraction. To this end, we devise an active-learning-based approach that iteratively learns from analysts' feedback over the relevance and superfluousness of the extracted domain model elements and uses this feedback to provide recommendations for filtering superfluous elements. We empirically evaluate our approach over three industrial case studies. Our results indicate that, once trained, our approach automatically detects an average of approximate to 45% of the superfluous elements with a precision of approximate to 96%. Since precision is very high, the automatic recommendations made by our approach are trustworthy. Consequently, analysts can dispose of a considerable fraction - nearly half - of the superfluous elements with minimal manual work. The results are particularly promising, as they should be considered in light of the non-negligible subjectivity that is inherently tied to the notion of relevance.
机译:领域模型是使自然语言要求的解释和阐述更加精确的有用工具。自然语言处理(NLP)的进步使从需求中自动提取与领域模型构建相关的大多数信息成为可能。但是,除了相关信息外,NLP还从需求中提取了大量不必要的信息(与领域模型无关)。本文的目的是开发自动辅助功能,以过滤域模型提取过程中NLP提取的多余信息。为此,我们设计了一种基于主动学习的方法,该方法从分析人员的反馈中反复学习提取的域模型元素的相关性和多余性,并使用此反馈为过滤多余元素提供建议。我们对三个行业案例研究进行了经验评估。我们的结果表明,经过训练后,我们的方法会自动检测到平均约45%的多余元素,精度约为96%。由于精度很高,因此我们的方法提出的自动建议是值得信赖的。因此,分析人员可以用最少的人工就可以处理相当一部分(近一半)的多余元素。结果是特别有希望的,因为应该根据与相关性概念固有联系的不可忽略的主观性来考虑它们。

著录项

  • 来源
  • 作者单位

    Univ Luxembourg, SnT Ctr Secur Reliabil & Trust, Luxembourg, Luxembourg|Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust SnT, 29 Ave John Fitzgerald Kennedy, L-1855 Luxembourg, Luxembourg;

    Univ Luxembourg, SnT Ctr Secur Reliabil & Trust, Luxembourg, Luxembourg|Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust SnT, 29 Ave John Fitzgerald Kennedy, L-1855 Luxembourg, Luxembourg;

    Univ Luxembourg, SnT Ctr Secur Reliabil & Trust, Luxembourg, Luxembourg|Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust SnT, 29 Ave John Fitzgerald Kennedy, L-1855 Luxembourg, Luxembourg;

    Univ Luxembourg, SnT Ctr Secur Reliabil & Trust, Luxembourg, Luxembourg|Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust SnT, 29 Ave John Fitzgerald Kennedy, L-1855 Luxembourg, Luxembourg;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Requirements engineering; active learning; natural-language requirements; domain modeling; case study research;

    机译:需求工程;主动学习;自然语言需求;领域建模;案例研究;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号