首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Multi-task Learning-based All-in-one Collaboration Framework for Degraded Image Super-resolution
【24h】

Multi-task Learning-based All-in-one Collaboration Framework for Degraded Image Super-resolution

机译:基于多任务学习的一体化协作框架,用于降级图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

In this article, we address the degraded image super-resolution problem in a multi-task learning (MU) manner. To better share representations between multiple tasks, we propose an all-in-one collaboration framework (ACF) with a learnable "junction" unit to handle two major problems that exist in MU-"How to share" and "How much to share." Specifically, ACF consists of a sharing phase and a reconstruction phase. Considering the intrinsic characteristic of multiple image degradations, we propose to first deal with the compression artifact, motion blur, and spatial structure information of the input image in parallel under a three-branch architecture in the sharing phase. Subsequently, in the reconstruction phase, we up-sample the previous features for high-resolution image reconstruction with a channel-wise and spatial attention mechanism. To coordinate two phases, we introduce a learnable "junction" unit with a dual-voting mechanism to selectively filter or preserve shared feature representations that come from sharing phase, learning an optimal combination for the following reconstruction phase. Finally, a curriculum learning-based training scheme is further proposed to improve the convergence of the whole framework. Extensive experimental results on synthetic and real-world low-resolution images show that the proposed all-in-one collaboration framework not only produces favorable high-resolution results while removing serious degradation, but also has high computational efficiency, outperforming state-of-the-art methods. We also have applied ACF to some image-quality sensitive practical task, such as pose estimation, to improve estimation accuracy of low-resolution images.
机译:在本文中,我们在多任务学习(MU)方式中解决了降级的图像超分辨率问题。为了更好地共享多项任务之间的表示,我们提出了一个包含可学习的“交叉路口”单元的一体化协作框架(ACF),以处理MU-“如何分享”和“分享的数量”中存在的两个主要问题。 “具体地,ACF由共享阶段和重建阶段组成。考虑到多个图像劣化的内在特征,我们建议首先在共享阶段的三分支架构下并行地处理输入图像的压缩伪影,运动模糊和空间结构信息。随后,在重建阶段,我们以频道 - 明智的和空间注意机制来提升先前的高分辨率图像重建的特征。为了协调两个阶段,我们引入了一种具有双投票机制的学习“结”单元,以选择性地滤波或保留来自共享阶段的共享特征表示,从而为以下重建阶段学习最佳组合。最后,进一步提出了一种基于课程的基于学习的培训方案来提高整个框架的融合。对综合和现实世界的低分辨率图像的广泛实验结果表明,所提出的一体化协作框架不仅产生了有利的高分辨率结果,同时消除了严重的降级,而且还具有高计算效率,表现优于最佳状态 - 方法。我们还将ACF应用于某些图像质量敏感的实用任务,如姿势估计,以提高低分辨率图像的估计精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号