首页> 外文期刊>International Journal of Pattern Recognition and Artificial Intelligence >Enhancing Blurred Low-Resolution Images via Exploring the Potentials of Learning-Based Super-Resolution
【24h】

Enhancing Blurred Low-Resolution Images via Exploring the Potentials of Learning-Based Super-Resolution

机译:通过探索基于学习的超分辨率的潜力,增强模糊的低分辨率图像

获取原文
获取原文并翻译 | 示例

摘要

This paper aims to propose a candidate solution to the challenging task of single-image blind super-resolution (SR), via extensively exploring the potentials of learning-based SR schemes in the literature. The task is formulated into an energy functional to be minimized with respect to both an intermediate super-resolved image and a nonparametric blur-kernel. The functional includes a so-called convolutional consistency term which incorporates a nonblind learning-based SR result to better guide the kernel estimation process, and a bi-L0-L2-norm regularization imposed on both the super-resolved sharp image and the nonparametric blur-kernel. A numerical algorithm is deduced via coupling the splitting augmented Lagrangian (SAL) and the conjugate gradient (CG) method. With the estimated blur-kernel, the final SR image is reconstructed using a simple TV-based nonblind SR method. The proposed blind SR approach is demonstrated to achieve better performance than [T. Michaeli and M. Irani, Nonparametric Blind Super-resolution, in Proc. IEEE Conf. Comput. Vision (IEEE Press, Washington, 2013), pp. 945-952.] in terms of both blur-kernel estimation accuracy and image ehancement quality. In the meanwhile, the experimental results demonstrate surprisingly that the local linear regression-based SR method, anchored neighbor regression (ANR) serves the proposed functional more appropriately than those harnessing the deep convolutional neural networks.
机译:本文旨在通过广泛探索文献中的基于学习的SR方案的潜力,提出候选解决单像盲目超分辨率(SR)的具有挑战性的任务。该任务被配制成相对于中间超分辨图像和非参数模糊核最小化的能量功能。该功能包括所谓的卷积一致性术语,该卷积一致性术语包含基于非盲学学习的SR结果,以更好地指导内核估计过程,以及在超分辨的锐利图像和非参数模糊上施加的Bi-L0-L2-Norm正规-核心。通过耦合分裂增强拉格朗日(SAL)和共轭梯度(CG)方法来推导数值算法。利用估计的模糊内核,使用简单的基于电视的非函数SR方法重建最终的SR图像。拟议的盲人SR方法被证明达到比[T. Michaeli和M. Irani,非参数盲目超级分辨率,在Proc中。 IEEE CONF。计算。愿景(IEEE按,华盛顿州,2013年),第945-952页。]就模糊核估计精度和图像EHANCENCENCE质量而言。同时,实验结果令人惊讶地表明,局部线性回归的SR方法,锚定邻居回归(ANR)比利用深卷积神经网络的那些更适当地提供所提出的功能。

著录项

  • 来源
  • 作者单位

    Nanjing Univ Posts & Telecommun Coll Telecommun & Informat Engn Nanjing Jiangsu Peoples R China|Nanjing Univ Posts & Telecommun Natl Engn Res Ctr Commun & Networking Nanjing Jiangsu Peoples R China;

    Nanjing Univ Posts & Telecommun Coll Telecommun & Informat Engn Nanjing Jiangsu Peoples R China;

    Nanjing Univ Posts & Telecommun Coll Telecommun & Informat Engn Nanjing Jiangsu Peoples R China|KTH Royal Inst Technol Sch Comp Sci & Commun Stockholm Sweden;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Super-resolution; dictionary learning; deep learning; blind deblurring; CNN;

    机译:超级分辨率;字典学习;深入学习;盲目去掩盖;CNN;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号