首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Spatial-temporal Regularized Multi-modality Correlation Filters for Tracking with Re-detection
【24h】

Spatial-temporal Regularized Multi-modality Correlation Filters for Tracking with Re-detection

机译:用于通过重新检测跟踪的空间 - 时间正则化多模态相关滤波器

获取原文
获取原文并翻译 | 示例

摘要

The development of multi-spectrum image sensing technology has brought great interest in exploiting the information of multiple modalities (e.g., RGB and infrared modalities) for solving computer vision problems. In this article, we investigate how to exploit information from RGB and infrared modalities to address two important issues in visual tracking: robustness and object re-detection. Although various algorithms that attempt to exploit multi-modality information in appearance modeling have been developed, they still face challenges that mainly come from the following aspects: (1) the lack of robustness to deal with large appearance changes and dynamic background, (2) failure in re-capturing the object when tracking loss happens, and (3) difficulty in determining the reliability of different modalities. To address these issues and perform effective integration of multiple modalities, we propose a new tracking-by-detection algorithm called Adaptive Spatial-temporal Regulated Multi-Modality Correlation Filter. Particularly, an adaptive spatial-temporal regularization is imposed into the correlation filter framework in which the spatial regularization can help to suppress effect from the cluttered background while the temporal regularization enables the adaptive incorporation of historical appearance cues to deal with appearance changes. In addition, a dynamic modality weight learning algorithm is integrated into the correlation filter training, which ensures that more reliable modalities gain more importance in target tracking. Experimental results demonstrate the effectiveness of the proposed method.
机译:多频谱图像传感技术的发展为利用用于解决计算机视觉问题的多种方式(例如,RGB和红外模式)的信息而感到非常兴趣。在本文中,我们调查如何利用RGB和红外模式的信息来解决视觉跟踪中的两个重要问题:鲁棒性和对象重新检测。尽管已经开发出在外观建模中进行了利用多种模式信息的各种算法,但它们仍然面临着主要来自以下几个方面的挑战:(1)缺乏处理大型外观变化和动态背景的鲁棒性(2)在跟踪丢失发生时重新捕获对象的失败,(3)难以确定不同模式的可靠性。为了解决这些问题并执行多种模式的有效集成,我们提出了一种称为自适应空间 - 时间调节的多模态相关滤波器的新的跟踪逐算法。特别地,将自适应空间 - 时间正则正规施加到相关的滤波器框架中,其中空间正则化可以有助于抑制杂乱的背景的效果,而时间正则化使得历史外观提示的自适应结合来处理外观变化。另外,将动态模态权重学习算法集成到相关滤波器训练中,这确保了更可靠的模式在目标跟踪中增强了更重要的。实验结果表明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号