首页> 外文期刊>Journal of visual communication & image representation >Learning discriminative update adaptive spatial-temporal regularized correlation filter for RGB-T tracking
【24h】

Learning discriminative update adaptive spatial-temporal regularized correlation filter for RGB-T tracking

机译:RGB-T跟踪学习辨别性更新自适应空间 - 时间正则相关滤波器

获取原文
获取原文并翻译 | 示例

摘要

The RGB-T trackers based on correlation filter framework have been extensively investigated for that they can track targets more accurately in most complex scenes. However, the performance of these trackers is limited when facing some specific challenging scenarios, such as occlusion and background clutter. For different tracking targets, most of these trackers utilize fixed regularization constraint to build the filter model, which is obviously unreasonable to effectively present the appearance changes and characteristics of a specific target. In addition, they adopt a simple model update mechanism based on linear interpolation, which can easily lead to model degradation in challenging scenarios, resulting in tracker drift. To solve the above problems, we propose a novel adaptive spatial-temporal regularized correlation filter model to learn an appropriate regularization for achieving robust tracking and a relative peak discriminative method for model updating to avoid the model degradation. Besides, to make better integrate the unique advantages of the two modes and adapt the changing appearance of the target, an adaptive weighting ensemble scheme and a multi-scale search mechanism are adopted, respectively. To optimize the proposed model, we designed an efficient ADMM algorithm, which greatly improved the efficiency. Extensive experiments have been carried out on two available datasets, RGBT234 and RGBT210, and the experimental results indicate that the tracker proposed by us performs favorably in both accuracy and robustness against the state-of-the-art RGB-T trackers.
机译:基于相关滤波器框架的RGB-T跟踪器已被广泛研究,因为它们可以在大多数复杂的场景中更准确地跟踪目标。然而,当面对一些特定的具具有挑战性的情况时,这些跟踪器的性能受到限制,例如遮挡和背景杂乱。对于不同的跟踪目标,大多数这些跟踪器利用固定的正则化约束来构建滤波器模型,这显然是不合理的,有效地呈现特定目标的外观变化和特征。此外,它们还采用了一种基于线性插值的简单模型更新机制,这很容易导致具有挑战性的场景中的模型劣化,从而导致跟踪器漂移。为了解决上述问题,我们提出了一种新颖的自适应空间 - 时间正则相关滤波器模型,用于学习实现鲁棒跟踪的适当正则化和用于模型更新的相对峰值判别方法,以避免模型降级。此外,为了更好地整合两种模式的独特优点,并采用自适应加权集合方案和多尺度搜索机制的改变外观。为了优化所提出的模型,我们设计了一种高效的ADMM算法,这大大提高了效率。在两个可用的数据集,RGBT234和RGBT210上进行了广泛的实验,实验结果表明,我们提出的跟踪器在最先进的RGB-T跟踪器中的准确性和鲁棒性方面表现出有利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号