首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Improving Multiperson Pose Estimation by Mask-aware Deep Reinforcement Learning
【24h】

Improving Multiperson Pose Estimation by Mask-aware Deep Reinforcement Learning

机译:通过掩盖意识的深度加强学习改善多思姿态估算

获取原文
获取原文并翻译 | 示例

摘要

Research on single-person pose estimation based on deep neural networks has recently witnessed progress in both accuracy and execution efficiency. However, multiperson pose estimation is still a challenging topic, partially because the object regions are selected greedily from proposals via class-agnostic nonmaximum suppression (NMS), and the misalignment in the redundant detection yields inaccurate human poses. Therefore, we consider how to obtain the optimal input in human pose estimation under conditions in which intermediate label information is not available. As supervised learning-based alignment does not generalize well to unseen samples in the human pose space, in this article, we present a mask-aware deep reinforcement learning approach to modify the detection result. We use mask information to remove the adverse effects from the cluttered background and to select the optimal action according to the revised reward function. We also propose a new regularization term to punish joints that are outside of the silhouette region in the human pose estimation stage. We evaluate our approach on the MPII Multiperson dataset and the MS-COCO Keypoints Challenge. The results show that our approach yields competing inference results when it is compared to the other state-of-the-art approaches.
机译:基于深度神经网络的单人姿态估计最近见证了准确性和执行效率的进展。然而,多峰姿势估计仍然是一个具有挑战性的话题,部分是因为通过类别 - 不可忽视非脂肪抑制(NMS)从提案中贪婪地选择对象区域,并且冗余检测中的未对准产生不准确的人类姿势。因此,我们考虑如何在中间标签信息不可用的条件下获得人类姿势估计中的最佳输入。由于受监管的基于学习的对齐在人类姿势空间中的样本不概括,在本文中,我们提出了一种掩模意识的深度加强学习方法来修改检测结果。我们使用掩码信息删除杂乱背景的不利影响,并根据修订的奖励功能选择最佳动作。我们还提出了一个新的正则化术语来惩罚人类姿势估算阶段轮廓区域之外的关节。我们在MPII Multiplson数据集和MS-Coco Keypoints挑战上评估我们的方法。结果表明,当与其他最先进的方法进行比较时,我们的方法会产生竞争推断。

著录项

  • 来源
  • 作者单位

    Zhejiang Gongshang Univ Sch Comp Sci & Informat Engn 18 Xuezheng Rd Hangzhou 310018 Peoples R China;

    Zhejiang Gongshang Univ Sch Comp Sci & Informat Engn 18 Xuezheng Rd Hangzhou 310018 Peoples R China;

    Zhejiang Gongshang Univ Sch Comp Sci & Informat Engn 18 Xuezheng Rd Hangzhou 310018 Peoples R China;

    Zhejiang Gongshang Univ Sch Comp Sci & Informat Engn 18 Xuezheng Rd Hangzhou 310018 Peoples R China;

    Rutgers State Univ Sch Commun & Informat 620 George St New Brunswick NJ 08901 USA;

    Shining3D Tech Co Ltd Shining3D Res 701 Gudun Rd Hangzhou 310018 Peoples R China;

    Fudan Univ Inst Sci & Technol Brain Inspired Intelligence Minist Educ Key Lab Computat Neurosci & Brain Inspired Intell 220 Handan Rd Shanghai 200433 Peoples R China;

    Wuhan Univ Sci & Technol Sch Comp Sci & Technol 199 Xiongchu Rd Wuhan 430065 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Computer vision; deep learning; regularization; reinforcement learning;

    机译:计算机愿景;深入学习;正规化;加固学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号