首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Appearance-consistent Video Object Segmentation Based on a Multinomial Event Model
【24h】

Appearance-consistent Video Object Segmentation Based on a Multinomial Event Model

机译:基于多项活动模型的外观 - 一致的视频对象分割

获取原文
获取原文并翻译 | 示例

摘要

In this study, we propose an effective and efficient algorithm for unconstrained video object segmentation, which is achieved in a Markov random field (MRF). In the MRF graph, each node is modeled as a superpixel and labeled as either foreground or background during the segmentation process. The unary potential is computed for each node by learning a transductive SVM classifier under supervision by a few labeled frames. The pairwise potential is used for the spatial-temporal smoothness. In addition, a high-order potential based on the multinomial event model is employed to enhance the appearance consistency throughout the frames. To minimize this intractable feature, we also introduce a more efficient technique that simply extends the original MRF structure. The proposed approach was evaluated in experiments with different measures and the results based on a benchmark demonstrated its effectiveness compared with other state-of-the-art algorithms.
机译:在这项研究中,我们提出了一种有效且有效地实现了无限制视频对象分割的算法,该算法在马尔可夫随机场(MRF)中实现。在MRF图中,每个节点被建模为SuperPixel,并在分割过程中标记为前景或背景。通过在由一些标记的帧的监督下学习转换SVM分类器来计算一元潜力。该成对电位用于空间平滑度。另外,基于多项事件模型的高阶电位用于增强整个帧的外观一致性。为了最大限度地减少该难以解力的特征,我们还引入了一种更有效的技术,即简单地扩展原始MRF结构。所提出的方法是在不同措施的实验中评估的,并且基于基准的结果与其他最先进的算法相比证明了其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号