首页> 外文期刊>IEEE Transactions on Image Processing >Unsupervised Primary Object Discovery in Videos Based on Evolutionary Primary Object Modeling With Reliable Object Proposals
【24h】

Unsupervised Primary Object Discovery in Videos Based on Evolutionary Primary Object Modeling With Reliable Object Proposals

机译:基于带有可靠对象提议的进化主对象建模的视频中无监督主对象发现

获取原文
获取原文并翻译 | 示例

摘要

A novel primary object discovery (POD) algorithm, which uses reliable object proposals while exploiting the recurrence property of a primary object in a video sequence, is proposed in this paper. First, we generate both color-based and motion-based object proposals in each frame, and extract the feature of each proposal using the random walk with restart simulation. Next, we estimate the foreground confidence for each proposal to remove unreliable proposals. By superposing the features of the remaining reliable proposals, we construct the primary object models. To this end, we develop the evolutionary primary object modeling technique, which exploits the recurrence property of the primary object. Then, using the primary object models, we choose the main proposal in each frame and find the location of the primary object by merging the main proposal with candidate proposals selectively. Finally, we refine the discovered bounding boxes by exploiting temporal correlations of the recurring primary object. Extensive experimental results demonstrate that the proposed POD algorithm significantly outperforms conventional algorithms.
机译:提出了一种新颖的主要对象发现算法,该算法在利用可靠对象建议的同时,利用视频序列中主要对象的递归特性。首先,我们在每个帧中生成基于颜色和基于运动的对象建议,并使用带有重新启动模拟的随机游走提取每个建议的特征。接下来,我们估计每个提案的前景置信度,以删除不可靠的提案。通过叠加其余可靠建议的功能,我们构建了主要的对象模型。为此,我们开发了进化的主要对象建模技术,该技术利用了主要对象的递归特性。然后,使用主要对象模型,我们在每个框架中选择主要建议,并通过有选择地将主要建议与候选建议合并来找到主要对象的位置。最后,我们通过利用循环主要对象的时间相关性来完善发现的边界框。大量的实验结果表明,提出的POD算法明显优于传统算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号