首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Joint Head Attribute Classifier and Domain-Specific Refinement Networks for Face Alignment
【24h】

Joint Head Attribute Classifier and Domain-Specific Refinement Networks for Face Alignment

机译:人脸对齐的联合头部属性分类器和特定领域的细化网络

获取原文
获取原文并翻译 | 示例

摘要

In this article, a two-stage refinement network is proposed for facial landmarks detection on unconstrained conditions. Our model can be divided into two modules, namely the Head Attribude Classifier (HAC) module and the Domain-Specific Refinement (DSR) module. Given an input facial image, HAC adopts multi-task learning mechanism to detect the head pose and obtain an initial shape. Based on the obtained head pose, DSR designs three different CNN-based refinement networks trained by specific domain, respectively, and automatically selects the most approximate network for the landmarks refinement. Different from existing two-stage models, HAC combines head pose prediction with facial landmarks estimation to improve the accuracy of head pose prediction, as well as obtaining a robust initial shape. Moreover, an adaptive sub-network training strategy applied in the DSR module can effectively solve the issue of traditional multi-view methods that an improperly selected sub-network may result in alignment failure. The extensive experimental results on two public datasets, AFLW and 300W, confirm the validity of our model.
机译:在本文中,提出了一种两阶段的改进网络,用于在不受约束的条件下检测人脸标志。我们的模型可以分为两个模块,即头属性分类器(HAC)模块和特定领域优化(DSR)模块。给定输入的面部图像,HAC采用多任务学习机制来检测头部姿势并获得初始形状。基于获得的头部姿势,DSR分别设计了三个由特定领域训练的不同的基于CNN的细化网络,并自动选择最近似的网络进行地标细化。与现有的两阶段模型不同,HAC将头部姿势预测与面部界标估计相结合,以提高头部姿势预测的准确性,并获得可靠的初始形状。此外,在DSR模块中应用的自适应子网训练策略可以有效解决传统的多视图方法的问题,即选择不正确的子网可能会导致对齐失败。在两个公共数据集AFLW和300W上的广泛实验结果证实了我们模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号