首页> 外文会议>International Conference on Automatic Face and Gesture Recognition >Stacked Hourglass Network Joint with Salient Region Attention Refinement for Face Alignment
【24h】

Stacked Hourglass Network Joint with Salient Region Attention Refinement for Face Alignment

机译:堆叠式沙漏网络接头,具有显着区域注意力细化功能,用于面部对齐

获取原文

摘要

Localizing facial landmarks is a fundamental step in facial image analysis. However, the problem continues to be challenging in condition of large variations caused by pose disparity, illumination, expression and occlusion. In this paper, we propose a coarse-to-fine framework which joints stacked hourglass network and salient region attention refinement for robust face alignment. To achieve this, we firstly develop a multi-scale region learning module (MSL) to analyze the structure and texture information at different facial region and extract strong discriminative deep feature. Then we employ a novel convolutional neural network named stacked hourglass network (SHN) for heatmap regression and initial facial landmarks prediction. Moreover, we present a salient region attention module (SRA) to extract precise feature based on the heatmap regression, and the filtered feature is used for landmarks refinement. The extensive experimental results on two public datasets, including 300W and COFW, confirm the validity of our model.
机译:对面部标志物进行本地化是面部图像分析的基本步骤。然而,在由姿势差异,照明,表情和遮挡引起的大变化的情况下,该问题仍然是具有挑战性的。在本文中,我们提出了一个粗到细的框架,该框架将沙漏网络和显着区域注意点联合起来以实现鲁棒的面部对齐。为此,我们首先开发了一个多尺度区域学习模块(MSL),以分析不同面部区域的结构和纹理信息,并提取出强大的区分性深层特征。然后,我们将一种新颖的卷积神经网络称为堆叠沙漏网络(SHN),用于热图回归和初始面部标志预测。此外,我们提出了一个显着区域关注模块(SRA),以基于热图回归提取精确特征,并将滤波后的特征用于地标精炼。在两个公共数据集(包括300W和COFW)上的广泛实验结果证实了我们模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号