首页> 外文期刊>ACM transactions on multimedia computing communications and applications >Joint Stacked Hourglass Network and Salient Region Attention Refinement for Robust Face Alignment
【24h】

Joint Stacked Hourglass Network and Salient Region Attention Refinement for Robust Face Alignment

机译:联合堆积的沙漏网络和突出区域注意力精制,适用于鲁棒脸对齐

获取原文
获取原文并翻译 | 示例

摘要

Facial landmark detection aims to locate keypoints for facial images, which typically suffer from variations caused by arbitrary pose, diverse facial expressions, and partial occlusion. In this article, we propose a coarse-to-fine framework that joins a stacked hourglass network and salient region attention refinement for robust face alignment. To achieve this goal, we first present a multi-scale region learning module to analyze the structure information at a different facial region and extract a strong discriminative deep feature. Then we employ a stacked hourglass network for heatmap regression and initial facial landmarks prediction. Specifically, the stacked hourglass network introduces an improved Inception-ResNet unit as a basic building block, which can effectively improve the receptive field and learn contextual feature representations. Meanwhile, a novel loss function takes into account global weights and local weights to make the heatmap regression more accurate. Different from existing heatmap regression models, we present a salient region attention refinement module to extract a precise feature based on the heatmap regression, and utilize the filtered feature for landmarks refinement to achieve accurate prediction. Extensive experimental results of several challenging datasets (including 300 Faces in the Wild, Caltech Occluded Faces in the Wild, and Annotated Facial Landmarks Faces in the Wild) confirm that our approach can achieve more competitive performance than the most advanced algorithms.
机译:面部地标检测旨在为面部图像定位关键点,这通常遭受由任意姿势,不同的面部表情和部分闭塞引起的变化。在本文中,我们提出了一种粗略的框架,将堆叠的沙漏网络和突出区域注意力加入鲁棒面对准。为了实现这一目标,我们首先介绍多尺度区域学习模块,以分析​​不同面部区域的结构信息,并提取强烈的鉴别深度特征。然后我们使用一个堆积的沙漏网络,用于热图回归和初始面部地标预测。具体地,堆叠的沙漏网络将改进的Inception-Reset单元作为基本构建块引入了一种基本构建块,其可以有效地改善接收领域并学习上下文特征表示。同时,一种新的损失函数考虑到全球权重和局部权重,以使热爱映射回归更准确。不同于现有的热图回归模型,我们介绍了一个突出区域注意力模块,以基于热图回归提取精确特征,并利用用于地标细化的过滤功能以实现精确的预测。广泛的几个具有挑战性的数据集(包括野外的300个面孔,在野外的Caltech封闭面孔,野外注释的面部地标面孔)证实,我们的方法可以实现比最先进的算法更竞争的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号