首页> 外文期刊>ACM Transactions on Modeling and Performance Evaluation of Computing Systems >An Experimental Performance Evaluation of Autoscalers for Complex Workflows
【24h】

An Experimental Performance Evaluation of Autoscalers for Complex Workflows

机译:自动定标器在复杂工作流程中的实验性能评估

获取原文
获取原文并翻译 | 示例

摘要

Elasticity is one of the main features of cloud computing allowing customers to scale their resources based on the workload. Many autoscalers have been proposed in the past decade to decide on behalf of cloud customers when and how to provision resources to a cloud application based on the workload utilizing cloud elasticity features. However, in prior work, when a new policy is proposed, it is seldom compared to the state-of-the-art, and is often compared only to static provisioning using a predefined quality of service target. This reduces the ability of cloud customers and of cloud operators to choose and deploy an autoscaling policy, as there is seldom enough analysis on the performance of the autoscalers in different operating conditions and with different applications. In our work, we conduct an experimental performance evaluation of autoscaling policies, using as application model workflows, a popular formalism for automating resource management for applications with well-defined yet complex structures. We present a detailed comparative study of general state-of-the-art autoscaling policies, along with two new workflow-specific policies. To understand the performance differences between the seven policies, we conduct various experiments and compare their performance in both pairwise and group comparisons. We report both individual and aggregated metrics. As many workflows have deadline requirements on the tasks, we study the effect of autoscaling on workflow deadlines. Additionally, we look into the effect of autoscaling on the accounted and hourly based charged costs, and we evaluate performance variability caused by the autoscaler selection for each group of workflow sizes. Our results highlight the trade-offs between the suggested policies, how they can impact meeting the deadlines, and how they perform in different operating conditions, thus enabling a better understanding of the current state-of-the-art.
机译:弹性是云计算的主要功能之一,可让客户根据工作负载扩展其资源。在过去的十年中,已经提出了许多自动定标器来代表云客户决定何时以及如何基于利用云弹性功能的工作量向云应用程序提供资源。但是,在先前的工作中,当提出新策略时,很少将其与最新技术进行比较,并且通常仅与使用预定义服务质量目标的静态配置进行比较。这会降低云客户和云运营商选择和部署自动扩展策略的能力,因为很少有关于不同操作条件和不同应用程序下自动扩展器性能的足够分析。在我们的工作中,我们对自动扩展策略进行了实验性的性能评估,使用一种流行的形式主义作为应用程序模型工作流,​​以自动化具有明确定义但结构复杂的应用程序的资源管理。我们将对一般最先进的自动缩放策略以及两种新的特定于工作流的策略进行详细的比较研究。为了了解这七个策略之间的效果差异,我们进行了各种实验,并在成对和小组比较中比较了它们的效果。我们报告单个指标和汇总指标。由于许多工作流程都对任务有最后期限要求,因此我们研究了自动缩放对工作期限的影响。此外,我们研究了自动缩放对已记帐费用和基于小时的收费成本的影响,并评估了针对每组工作流大小的自动缩放器选择所导致的性能差异。我们的结果突出显示了建议的策略之间的权衡,它们如何影响在截止日期之前的影响以及它们在不同操作条件下的执行情况,从而使您能够更好地了解当前的最新技术水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号