首页> 外文期刊>ACM Transactions on Modeling and Computer Simulation >A Fuzzy Set Theoretic Approach to Validate Simulation Models
【24h】

A Fuzzy Set Theoretic Approach to Validate Simulation Models

机译:验证仿真模型的模糊集理论方法

获取原文
获取原文并翻译 | 示例

摘要

We develop a new approach to the validation of simulation models by exploiting elements from fuzzy set theory and machine learning. A fuzzy resemblance relation concept is used to set up a mathematical framework for measuring the degree of similarity between the input-output behavior of a simulation model and the corresponding behavior of the real system. A neuro-fuzzy inference algorithm is employed to automatically learn the required resemblance relation from real and simulated data. Ultimately, defuzzification strategies are applied to obtain a coefficient on the unit interval that characterizes the degree of model validity. An example in the airline industry illustrates the practical application of this methodology.
机译:我们利用模糊集理论和机器学习中的元素,开发了一种用于验证仿真模型的新方法。模糊相似关系概念用于建立一个数学框架,用于测量仿真模型的输入输出行为与实际系统的相应行为之间的相似程度。采用神经模糊推理算法从实际数据和模拟数据中自动学习所需的相似关系。最终,应用去模糊策略以获得单位间隔上的系数,该系数表征了模型有效性的程度。航空业的一个例子说明了该方法的实际应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号