首页> 外文期刊>ACM Transactions on Interactive Intelligent Systems >Automatic Classification of Leading Interactions in a String Quartet
【24h】

Automatic Classification of Leading Interactions in a String Quartet

机译:弦乐四重奏中主要交互的自动分类

获取原文
获取原文并翻译 | 示例

摘要

The aim of the present work is to analyze automatically the leading interactions between the musicians of a string quartet, using machine-learning techniques applied to nonverbal features of the musicians' behavior, which are detected through the help of a motion-capture system. We represent these interactions by a graph of "influence" of the musicians, which displays the relations "is following" and "is not following" with weighted directed arcs. The goal of the machine-learning problem investigated is to assign weights to these arcs in an optimal way. Since only a subset of the available training examples are labeled, a semisupervised support vector machine is used, which is based on a linear kernel to limit its model complexity. Specific potential applications within the field of human-computer interaction are also discussed, such as e-learning, networked music performance, and social active listening.
机译:本工作的目的是使用应用于运动者的非语言特征的机器学习技术,自动分析弦乐四重奏者之间的主导互动,运动学习系统会借助这种技术来检测这种行为。我们通过音乐家的“影响力”图来表示这些交互,该图显示了带有加权有向弧的关系“正在遵循”和“不遵循”。所研究的机器学习问题的目标是以最佳方式为这些弧分配权重。由于仅标记了可用训练示例的一个子集,因此使用了半监督支持向量机,该机器基于线性核来限制其模型复杂性。还讨论了人机交互领域中的特定潜在应用程序,例如电子学习,网络音乐表演和社交积极聆听。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号