首页> 外文期刊>ACM transactions on intelligent systems >Learning Probabilistic Hierarchical Task Networks as Probabilistic Context-Free Grammars to Capture User Preferences
【24h】

Learning Probabilistic Hierarchical Task Networks as Probabilistic Context-Free Grammars to Capture User Preferences

机译:将概率分层任务网络学习为概率上下文无关文法,以捕获用户首选项

获取原文
获取原文并翻译 | 示例

摘要

We introduce an algorithm to automatically learn probabilistic hierarchical task networks (pHTNs) that capture a user's preferences on plans by observing only the user's behavior. HTNs are a common choice of representation for a variety of purposes in planning, including work on learning in planning. Our contributions are twofold. First, in contrast with prior work, which employs HTNs to represent domain physics or search control knowledge, we use HTNs to model user preferences. Second, while most prior work on HTN learning requires additional information (e.g., annotated traces or tasks) to assist the learning process, our system only takes plan traces as input. Initially, we will assume that users carry out preferred plans more frequently, and thus the observed distribution of plans is an accurate representation of user preference. We then generalize to the situation where feasibility constraints frequently prevent the execution of preferred plans. Taking the prevalent perspective of viewing HTNs as grammars over primitive actions, we adapt an expectation-maximization (EM) technique from the discipline of probabilistic grammar induction to acquire probabilistic context-free grammars (pCFG) that capture the distribution on plans. To account for the difference between the distributions of possible and preferred plans, we subsequently modify this core EM technique by rescaling its input. We empirically demonstrate that the proposed approaches are able to learn HTNs representing user preferences better than the inside-outside algorithm. Furthermore, when feasibility constraints are obfuscated, the algorithm with rescaled input performs better than the algorithm with the original input.
机译:我们引入了一种算法来自动学习概率分层任务网络(pHTN),该算法通过仅观察用户的行为来捕获用户对计划的偏好。对于规划中的各种目的,包括规划中的学习工作,HTN是表示形式的常见选择。我们的贡献是双重的。首先,与使用HTN表示领域物理或搜索控制知识的现有工作相反,我们使用HTN来建模用户偏好。其次,虽然大多数以前的HTN学习工作都需要其他信息(例如带注释的跟踪或任务)来辅助学习过程,但我们的系统仅将计划跟踪作为输入。最初,我们将假设用户更频繁地执行首选计划,因此观察到的计划分布是用户偏好的准确表示。然后,我们归纳为可行性约束经常阻止执行首选计划的情况。从将HTN作为原始动作的语法的普遍观点出发,我们从概率语法归纳的学科中采用了期望最大化(EM)技术,以获取捕获计划中分布的概率无上下文语法(pCFG)。为了解决可能的计划和首选计划的分布之间的差异,我们随后通过重新调整其输入来修改此核心EM技术。我们凭经验证明,所提出的方法比内向外算法能够更好地学习代表用户偏好的HTN。此外,当混淆了可行性约束时,具有重新缩放的输入的算法的性能要优于具有原始输入的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号