首页> 外文期刊>ACM transactions on Asian language information processing >Speech Act Identification Using Semantic Dependency Graphs with Probabilistic Context-Free Grammars
【24h】

Speech Act Identification Using Semantic Dependency Graphs with Probabilistic Context-Free Grammars

机译:使用带有语义上下文无关文法的语义依赖图进行语音行为识别

获取原文
获取原文并翻译 | 示例

摘要

We propose an approach for identifying the speech acts of speakers' utterances in conversational spoken dialogue that involves using semantic dependency graphs with probabilistic context-free grammars (PCFGs). The semantic dependency graph based on the HowNet knowledge base is adopted to model the relationships between words in an utterance parsed by PCFG. Dependency relationships between words within the utterance are extracted by decomposing the semantic dependency graph according to predefined events. The corresponding values of semantic slots are subsequently extracted from the speaker's utterances according to the corresponding identified speech act. The experimental results obtained when using the proposed approach indicated that the accuracy rates of speech act detection and task completion were 95.6% and 77.4% for human-generated transcription (REF) and speech-to-text recognition output (STT), respectively, and the average numbers of turns of each dialogue were 8.3 and 11.8 for REF and STT, respectively. Compared with Bayes classifier, partial pattern tree, and Bayesian-network-based approaches, we obtained 14.1%, 9.2%, and 3% improvements in the accuracy of speech act identification, respectively.
机译:我们提出了一种在会话口语对话中识别说话者话语行为的方法,该方法涉及将语义依赖图与概率上下文无关文法(PCFG)一起使用。采用基于HowNet知识库的语义依赖图,对PCFG解析的话语中单词之间的关系进行建模。通过根据预定义的事件分解语义依赖性图来提取话语内单词之间的依赖性关系。随后根据相应的识别出的言语行为,从说话者的话语中提取出相应的语义时隙值。使用所提出的方法获得的实验结果表明,对于人类生成的转录(REF)和语音到文本识别输出(STT),语音行为检测和任务完成的准确率分别为95.6%和77.4%,并且REF和STT每次对话的平均转数分别为8.3和11.8。与贝叶斯分类器,部分模式树和基于贝叶斯网络的方法相比,我们在语音行为识别的准确性上分别提高了14.1%,9.2%和3%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号