首页> 外文期刊>ACM transactions on intelligent systems >A Data Mining Approach to Assess Privacy Risk in Human Mobility Data
【24h】

A Data Mining Approach to Assess Privacy Risk in Human Mobility Data

机译:一种评估人员流动数据隐私风险的数据挖掘方法

获取原文
获取原文并翻译 | 示例

摘要

Human mobility data are an important proxy to understand human mobility dynamics, develop analytical services, and design mathematical models for simulation and what-if analysis. Unfortunately mobility data are very sensitive since they may enable the re-identification of individuals in a database. Existing frameworks for privacy risk assessment provide data providers with tools to control and mitigate privacy risks, but they suffer two main shortcomings: (i) they have a high computational complexity; (ii) the privacy risk must be recomputed every time new data records become available and for every selection of individuals, geographic areas, or time windows. In this article, we propose a fast and flexible approach to estimate privacy risk in human mobility data. The idea is to train classifiers to capture the relation between individual mobility patterns and the level of privacy risk of individuals. We show the effectiveness of our approach by an extensive experiment on real-world GPS data in two urban areas and investigate the relations between human mobility patterns and the privacy risk of individuals.
机译:人员流动数据是了解人员流动动态,开发分析服务以及设计用于仿真和假设分析的数学模型的重要代理。不幸的是,移动性数据非常敏感,因为它们可以重新识别数据库中的个人。现有的隐私风险评估框架为数据提供者提供了控制和缓解隐私风险的工具,但它们存在两个主要缺点:(i)计算复杂性高; (ii)每当有新的数据记录可用时,对于个人,地理区域或时间窗口的每一次选择,都必须重新计算隐私风险。在本文中,我们提出了一种快速灵活的方法来估计人类移动性数据中的隐私风险。这个想法是训练分类器来捕获个人流动模式和个人隐私风险水平之间的关系。通过对两个城市地区的真实GPS数据进行广泛的实验,我们证明了该方法的有效性,并研究了人类出行方式与个人隐私风险之间的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号