首页> 外文期刊>ACM transactions on intelligent systems >Contextual Anomaly Detection in Solder Paste Inspection with Multi-Task Learning
【24h】

Contextual Anomaly Detection in Solder Paste Inspection with Multi-Task Learning

机译:用多任务学习焊膏检查中的语境异常检测

获取原文
获取原文并翻译 | 示例

摘要

In this article, we study solder paste inspection (SPI), an important stage that is used in the semiconductor manufacturing industry, where abnormal boards should be detected. A highly accurate SPI can substantially reduce human expert involvement, as well as reduce the waste in disposing of the boards in good condition. A key difference today is that because of increasing demand in board customization, the number of board types increases substantially and quantity of the boards produced in each type decreases. Thus, the previous approaches where a fine-tuned model is developed for each board type are no longer viable.Intrinsically, our problem is an anomaly detection problem. A major specialty in today's SPI is that the target tasks for prediction cannot be fully pre-determined due to context changes during the solder paste printing stage. Our experiences show that a conventional approach to first define a set of tasks and train these tasks offline will lead to low accuracy. Here, we propose a novel multi-task approach, where the performance of all target tasks is ensured simultaneously. We note that the SPI process is streamlined and automatic, allowing the SPI time for only a few seconds. We propose a fast clustering algorithm that reuses existing models to avoid retraining and fine tune in the inference phase. We evaluate our approach using 3-month data collected from production lines. We show that we can reduce 81.28% of false alarms. This can translate to annual savings of $11.3 million.
机译:在本文中,我们研究了焊膏检验(SPI),是在半导体制造业中使用的一个重要阶段,其中应该检测到异常板。高度准确的SPI可以大大减少人类的专家参与,以及减少在良好状态下减少处理电路板的废物。今天的一个关键差异是,由于船上定制需求的增加,电路板类型的数量大幅增加,每种类型产生的电路板的数量会降低。因此,为每个板类型开发了微调模型的先前方法不再是可行的。预测,我们的问题是异常检测问题。今天SPI的主要专业是由于在焊膏印刷阶段期间的上下文变化,预测的目标任务是不能完全预先确定的。我们的经验表明,首先定义一组任务和培训这些任务的传统方法将导致低精度。在这里,我们提出了一种新的多任务方法,其中同时确保所有目标任务的性能。我们注意到SPI流程被简化和自动,只需几秒钟即可允许SPI时间。我们提出了一种快速聚类算法,可重用现有模型,以避免在推理阶段中再培训和微调。我们使用从生产线收集的3个月数据评估我们的方法。我们表明我们可以减少81.28%的误报。这可以转化为1130万美元的年度储蓄。

著录项

  • 来源
    《ACM transactions on intelligent systems》 |2020年第6期|65.1-65.17|共17页
  • 作者单位

    Hong Kong Polytech Univ Dept Comp Hung Hom Yokchoi Rd 11 Hong Kong Peoples R China|Huawei Cloud Edge Cloud Innovat Lab Huawei Base E1 Shenzhen Peoples R China;

    Huawei Cloud Edge Cloud Innovat Lab Huawei Base E1 Shenzhen Peoples R China;

    Huawei Cloud Edge Cloud Innovat Lab Huawei Base E1 Shenzhen Peoples R China;

    Hong Kong Polytech Univ Dept Comp Hung Hom Yokchoi Rd 11 Hong Kong Peoples R China;

    Huawei Cloud Edge Cloud Innovat Lab Huawei Base E1 Shenzhen Peoples R China;

    Huawei Cloud Edge Cloud Innovat Lab Huawei Base E1 Shenzhen Peoples R China;

    Hong Kong Polytech Univ Dept Comp Hung Hom Yokchoi Rd 11 Hong Kong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Contextual anomaly detection; multi-task learning;

    机译:语境异常检测;多任务学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号