首页> 外文期刊>ACM Transactions on Information Systems >Reinforcement Learning-based Collective Entity Alignment with Adaptive Features
【24h】

Reinforcement Learning-based Collective Entity Alignment with Adaptive Features

机译:基于钢筋的基于学习的集体实体与自适应功能对齐

获取原文
获取原文并翻译 | 示例

摘要

Entity alignment (EA) is the task of identifying the entities that refer to the same real-world object but are located in different knowledge graphs (KGs). For entities to be aligned, existing EA solutions treat them separately and generate alignment results as ranked lists of entities on the other side. Nevertheless, this decision-making paradigm fails to take into account the interdependence among entities. Although some recent efforts mitigate this issue by imposing the 1-to-1 constraint on the alignment process, they still cannot adequately model the underlying interdependence and the results tend to be sub-optimal.To fill in this gap, in this work, we delve into the dynamics of the decision-making process, and offer a reinforcement learning (RL)-based model to align entities collectively. Under the RL framework, we devise the coherence and exclusiveness constraints to characterize the interdependence and restrict collective alignment. Additionally, to generate more precise inputs to the RL framework, we employ representative features to capture different aspects of the similarity between entities in heterogeneous KGs, which are integrated by an adaptive feature fusion strategy. Our proposal is evaluated on both cross-lingual and mono-lingual EA benchmarks and compared against state-of-the-art solutions. The empirical results verify its effectiveness and superiority.
机译:实体对齐(EA)是识别引用相同真实世界对象但位于不同知识图表(KGS)中的实体的任务。对于要对齐的实体,现有的EA解决方案分别对准并生成对齐结果作为另一方的实体列表。尽管如此,这种决策范式未能考虑实体之间的相互依存。虽然最近的一些努力通过对对齐过程中的1比1限制实施了这一问题,但他们仍然无法充分模仿潜在的相互依存,结果往往是次级的。在这项工作中填补这个差距,我们达到决策过程的动态,并提供了基于钢筋学习(RL)模型,以共同对齐实体。在RL框架下,我们设计了一致性和排他性限制,以表征相互依存和限制集体对齐。另外,为了为RL框架生成更精确的输入,我们采用代表性特征来捕获异构KG中的实体之间的相似性的不同方面,其被自适应特征融合策略集成在一起。我们的提案是在交叉语言和单韵的EA基准上进行评估,并与最先进的解决方案进行比较。经验结果验证了其有效性和优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号