首页> 外文期刊>ACM Transactions on Information Systems >Understanding Assimilation-contrast Effects in Online Rating Systems: Modelling, Debiasing, and Applications
【24h】

Understanding Assimilation-contrast Effects in Online Rating Systems: Modelling, Debiasing, and Applications

机译:了解在线评分系统中的同化对比效果:建模,去偏置和应用

获取原文
获取原文并翻译 | 示例

摘要

"Unbiasedness," which is an important property to ensure that users' ratings indeed reflect their true evaluations of products, is vital both in shaping consumer purchase decisions and providing reliable recommendations in online rating systems. Recent experimental studies showed that distortions from historical ratings would ruin the unbiasedness of subsequent ratings. How to "discover" historical distortions in each single rating (or at the micro-level), and perform the "debiasing operations" are our main objective. Using 42M real customer ratings, we first show that users either "assimilate" or "contrast" to historical ratings under different scenarios, which can be further explained by a well-known psychological argument: the "Assimilate-Contrast" theory. This motivates us to propose the Historical Influence Aware Latent Factor Model (HIALF), the "first" model for real rating systems to capture and mitigate historical distortions in each single rating. HALF allows us to study the influence patterns of historical ratings from a modelling perspective, which perfectly matches the assimilation and contrast effects observed in experiments. Moreover, HIALF achieves significant improvements in predicting subsequent ratings and characterizing relationships in ratings. It also contributes to better recommendations, wiser consumer purchase decisions, and deeper understanding of historical distortions in both honest rating and misbehaving rating settings.
机译:“无偏见”是确保用户的评分确实反映他们对产品的真实评价的重要属性,对于制定消费者的购买决策和在在线评分系统中提供可靠的建议都至关重要。最近的实验研究表明,历史评级的扭曲会破坏后续评级的公正性。我们的主要目标是如何“发现”每个单个评级(或微观级别)的历史失真,并执行“去偏置操作”。我们首先使用42M的真实客户评分,显示用户在不同情况下与历史评分“同化”或“对比”,这可以通过一种著名的心理学论点“同化对比”理论来进一步解释。这促使我们提出历史影响感知潜在因子模型(HIALF),这是实际评级系统的“第一个”模型,可以捕获和缓解每个单个评级中的历史失真。 HALF允许我们从建模角度研究历史评级的影响模式,这与实验中观察到的同化和对比效果完全匹配。此外,HIALF在预测后续评级和表征评级关系方面取得了显着改进。它还有助于提供更好的建议,更明智的消费者购买决策,以及更深入地了解诚实评级和行为不当评级设置中的历史失真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号