首页> 中文期刊> 《模式识别与人工智能》 >基于无偏置项LSSVM的稳健在线过程建模方法

基于无偏置项LSSVM的稳健在线过程建模方法

     

摘要

针对直接利用最小二乘支持向量机(LSSVM)对动态过程在线建模时预测精度易受过程输出测量值上的粗大误差和噪声影响的问题,在分析样本序列结构特征和噪声作用特征基础上,提出一种基于无偏置项LSSVM的稳健在线过程建模方法.该方法在每一预测周期中根据预测误差与设定阈值之间的关系来识别和恢复异常测量值、识别和修正含噪声测量值,从而降低样本中的噪声,使得出的LSSVM较好地跟踪过程的动态特性.这种在线过程建模方法具有稳健性,能减少输出值上粗大误差和高斯白噪声对LSSVM预测精度的影响,提高预测精度.数字仿真显示该方法的有效性和优越性.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号