首页> 外文期刊>ACM Transactions on Information Systems >Learning or Forgetting? A Dynamic Approach for Tracking the Knowledge Proficiency of Students
【24h】

Learning or Forgetting? A Dynamic Approach for Tracking the Knowledge Proficiency of Students

机译:学习还是忘记?动态跟踪学生知识水平的方法

获取原文
获取原文并翻译 | 示例

摘要

The rapid development of the technologies for online learning provides students with extensive resources for self-learning and brings new opportunities for data-driven research on educational management. An important issue of online learning is to diagnose the knowledge proficiency (i.e., the mastery level of a certain knowledge concept) of each student. Considering that it is a common case that students inevitably learn and forget knowledge from time to time, it is necessary to track the change of their knowledge proficiency during the learning process. Existing approaches either relied on static scenarios or ignored the interpretability of diagnosis results. To address these problems, in this article, we present a focused study on diagnosing the knowledge proficiency of students, where the goal is to track and explain their evolutions simultaneously. Specifically, we first devise an explanatory probabilistic matrix factorization model, Knowledge Proficiency Tracing (KPT), by leveraging educational priors. KPT model first associates each exercise with a knowledge vector in which each element represents a specific knowledge concept with the help of Q-matrix. Correspondingly, at each time, each student can be represented as a proficiency vector in the same knowledge space. Then, our KPT model jointly applies two classical educational theories (i.e., learning curve and forgetting curve) to capture the change of students' proficiency level on concepts over time. Furthermore, for improving the predictive performance, we develop an improved version of KPT, named Exercise-correlated Knowledge Proficiency Tracing (EKPT), by considering the connectivity among exercises with the same knowledge concepts. Finally, we apply our KPT and EKPT models to three important diagnostic tasks, including knowledge estimation, score prediction, and diagnosis result visualization. Extensive experiments on four real-world datasets demonstrate that both of our models could track the knowledge proficiency of students effectively and interpretatively.
机译:在线学习技术的飞速发展为学生提供了广泛的自我学习资源,并为以数据为导向的教育管理研究带来了新的机遇。在线学习的一个重要问题是诊断每个学生的知识水平(即某种知识概念的掌握水平)。考虑到学生不可避免地会不时地学习和忘记知识是常见的情况,因此有必要在学习过程中跟踪其知识水平的变化。现有方法要么依靠静态方案,要么忽略诊断结果的可解释性。为了解决这些问题,在本文中,我们将重点研究诊断学生的知识水平,目的是同时跟踪和解释他们的发展。具体来说,我们首先利用教育先验,设计了一种解释性概率矩阵分解模型,即知识熟练程度追踪(KPT)。 KPT模型首先将每个练习与知识向量关联,其中每个元素借助Q矩阵代表一个特定的知识概念。相应地,每次,每个学生都可以表示为同一知识空间中的熟练程度向量。然后,我们的KPT模型共同应用了两种经典的教育理论(即学习曲线和遗忘曲线)来捕捉学生在概念上的熟练程度随时间的变化。此外,为了提高预测性能,我们通过考虑具有相同知识概念的练习之间的联系,开发了改进的KPT版本,称为运动相关知识熟练程度追踪(EKPT)。最后,我们将KPT和EKPT模型应用于三个重要的诊断任务,包括知识估计,分数预测和诊断结果可视化。在四个真实世界的数据集上进行的大量实验表明,我们的两个模型都可以有效且解释性地跟踪学生的知识水平。

著录项

  • 来源
    《ACM Transactions on Information Systems》 |2020年第2期|19.1-19.33|共33页
  • 作者

  • 作者单位

    Univ Sci & Technol China Anhui Prov Key Lab Big Data Anal & Applicat Hefei 230027 Anhui Peoples R China;

    Hefei Univ Technol Hefei 230009 Anhui Peoples R China|iFLYTEK Co Ltd State Key Lab Cognit Intelligence Hefei Peoples R China;

    SUNY Stony Brook Stony Brook NY 11794 USA;

    Anhui Univ Key Lab Intelligent Comp & Signal Proc Minist Educ Hefei 230039 Anhui Peoples R China;

    iFLYTEK Res Hefei 230088 Anhui Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Diagnosis; knowledge proficiency levels; educational theories;

    机译:诊断;知识水平;教育理论;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号