首页> 外文期刊>ACM Transactions on Information Systems >Enhancing Personalized Recommendation by Implicit Preference Communities Modeling
【24h】

Enhancing Personalized Recommendation by Implicit Preference Communities Modeling

机译:通过隐式偏好社区建模来增强个性化推荐

获取原文
获取原文并翻译 | 示例

摘要

Recommender systems aim to capture user preferences and provide accurate recommendations to users accordingly. For each user, there usually exist others with similar preferences, and a collection of users may also have similar preferences with each other, thus forming a community. However, such communities may not necessarily be explicitly given, and the users inside the same communities may not know each other; they are formally defined and named Implicit Preference Communities (IPCs) in this article. By enriching user preferences with the information of other users in the communities, the performance of recommender systems can also be enhanced.Historical explicit ratings are a good resource to construct the IPCs of users but is usually sparse. Meanwhile, user preferences are easily affected by their social connections, which can be jointly used for IPC modeling with the ratings. However, this imposes two challenges for model design. First, the rating and social domains are heterogeneous; thus, it is challenging to coordinate social information and rating behaviors for a same learning task. Therefore, transfer learning is a good strategy for I PC modeling. Second, the communities are not explicitly labeled, and existing supervised learning approaches do not fit the requirement of IPC modeling. As co-clustering is an effective unsupervised learning approach for discovering block structures in high-dimensional data, it is a cornerstone for discovering the structure of IPCs.In this article, we propose a recommendation model with Implicit Preference Communities from user ratings and social connections. To tackle the unsupervised learning limitation, we design a Bayesian probabilistic graphical model to capture the IPC structure for recommendation. Meanwhile, following the spirit of transfer learning, both rating behaviors and social connections are introduced into the model by parameter sharing. Moreover, Gibbs sampling-based algorithms are proposed for parameter inferences of the models. Furthermore, to meet the need for online scenarios when the data arrive sequentially as a stream, a novel online sampling-based parameter inference algorithm for recommendation is proposed. To the best of our knowledge, this is the first attempt to propose and formally define the concept of IPC.
机译:推荐系统旨在捕获用户的偏好并相应地向用户提供准确的建议。对于每个用户,通常存在其他人具有相似的偏好,并且用户的集合也可能彼此具有相似的偏好,因此形成了一个社区。但是,不一定必须明确指定此类社区,并且同一社区内的用户可能并不认识。它们在本文中已正式定义并命名为隐式首选项社区(IPC)。通过使用社区中其他用户的信息丰富用户的偏好,推荐系统的性能也可以得到提高。历史明确等级是构建用户IPC的良好资源,但通常很少。同时,用户偏好容易受到其社交关系的影响,可以与等级一起用于IPC建模。但是,这给模型设计带来了两个挑战。首先,等级和社会领域是异质的。因此,对于同一项学习任务而言,协调社交信息和评价行为具有挑战性。因此,转移学习是I PC建模的好策略。其次,社区没有明确标记,并且现有的监督学习方法不符合IPC建模的要求。由于共聚是发现高维数据中块结构的一种有效的无监督学习方法,因此它是发现IPC结构的基石。在本文中,我们提出了一个基于隐含偏好社区的推荐模型,该模型来自用户等级和社交关系。为了解决无监督学习的局限性,我们设计了贝叶斯概率图形模型来捕获IPC结构以进行推荐。同时,遵循迁移学习的精神,通过参数共享将评级行为和社会联系都引入模型。此外,针对模型的参数推导,提出了基于吉布斯采样的算法。此外,为了满足数据流作为顺序到达时在线场景的需求,提出了一种新颖的基于在线采样的参数推导算法进行推荐。据我们所知,这是首次提出并正式定义IPC概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号