首页> 外文期刊>Knowledge-Based Systems >Diverse personalized recommendations with uncertainty from implicit preference data with the Bayesian Mallows model
【24h】

Diverse personalized recommendations with uncertainty from implicit preference data with the Bayesian Mallows model

机译:来自贝叶斯Mallows模型的隐式偏好数据具有不确定性的各种个性化推荐

获取原文
获取原文并翻译 | 示例

摘要

Clicking data, which exists in abundance and contains objective user preference information, is widely used to produce personalized recommendations in web-based applications. Current popular recommendation algorithms, typically based on matrix factorizations, often focus on achieving high accuracy. While achieving good clickthrough rates, diversity of the recommended items is often overlooked. Moreover, most algorithms do not produce interpretable uncertainty quantifications of the recommendations. In this work, we propose the Bayesian Mallows for Clicking Data (BMCD) method, which simultaneously considers accuracy and diversity. BMCD augments clicking data into compatible full ranking vectors by enforcing all the clicked items clicked by a user to be top-ranked regardless of their rarity. User preferences are learned using a Mallows ranking model. Bayesian inference leads to interpretable uncertainties of each individual recommendation, and we also propose a method to make personalized recommendations based on such uncertainties. With a simulation study and a real life data example, we demonstrate that compared to state-of-the-art matrix factorization, BMCD makes personalized recommendations with similar accuracy, while achieving much higher level of diversity, and producing interpretable and actionable uncertainty estimation. (C) 2019 The Authors. Published by Elsevier B.V.
机译:大量存在的单击数据,其中包含客观的用户偏好信息,被广泛用于在基于Web的应用程序中生成个性化推荐。当前流行的推荐算法通常基于矩阵分解,通常专注于实现高精度。在获得良好的点击率的同时,推荐项目的多样性常常被忽略。此外,大多数算法不会产生建议的可解释的不确定性量化。在这项工作中,我们提出了贝叶斯单击数据的锦葵(BMCD)方法,该方法同时考虑了准确性和多样性。 BMCD通过强制使用户单击的所有单击项都排名最高,而不考虑其稀有性,从而将单击数据扩充为兼容的完整排名向量。用户偏好是使用Mallows排名模型学习的。贝叶斯推理导致每个推荐的可解释的不确定性,我们还提出了一种基于此类不确定性进行个性化推荐的方法。通过仿真研究和现实生活中的数据示例,我们证明与最先进的矩阵分解相比,BMCD可以以相似的准确性提供个性化建议,同时实现更高的多样性,并产生可解释且可操作的不确定性估计。 (C)2019作者。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号