首页> 外文期刊>Arabian Journal for Science and Engineering >Factored Item Similarity and Bayesian Personalized Ranking for Recommendation with Implicit Feedback
【24h】

Factored Item Similarity and Bayesian Personalized Ranking for Recommendation with Implicit Feedback

机译:带隐式反馈的推荐因素分解项目相似度和贝叶斯个性化排名

获取原文
获取原文并翻译 | 示例

摘要

Item recommendations aim to predict a list of items (e.g., items on Amazon website) for each user that he or she might like. In fact, implicit feedback, such as transaction records in e-commerce websites and the likes behavior in social networks website (e.g., Facebook), has been received more and more attention in the scenarios of item recommendation. The core of the recommender system is the ranking algorithm which exploits the implicit feedback and generates the personalized item list to meet user's specific preferences. In most of the previous studies, the pairwise personalized ranking techniques empirically achieve better performance than the matrix factorization and adaptive k nearest-neighbor method since the pairwise ranking methods can directly reflect the model user's ranking preference on items. In most of the recent works, factored item similarity techniques which learn the global item similarity by utilizing two low-dimensional latent factor matrices achieve better performance than other state-of-art top-N methods with predefined similarity, such as cosine similarity. The individual relative preference assumption among observed items and unobserved items are critical for the pairwise ranking methods. As a response, this paper proposes a new and improved preference assumption based on the factored item similarity and individual preference. In addition, a novel recommendation algorithm correspondingly named factored item similarity and Bayesian Personalized Ranking model is designed. The novelty of the algorithm is that it can (1) learn the global item similarity with latent factor models. (2) utilize effective pairwise ranking methods to deal with the item recommendation problems with implicit feedback. (3) assign different item weights on explicit feedback and implicit feedback. Empirical results show that this model outperforms other state-of-the-art top-N recommendation methods on two public datasets in terms of prec@5 and ndcg@5. It can be found that the advantage of FSBPR lies in its ability to exploit implicit feedback and capture global item similarity.
机译:项目建议旨在为他或她可能喜欢的每个用户预测项目列表(例如,亚马逊网站上的项目)。实际上,在项目推荐的场景中,诸如电子商务网站中的交易记录以及社交网络网站(例如,Facebook)中的喜欢行为之类的隐式反馈已经受到越来越多的关注。推荐系统的核心是排名算法,该算法利用隐式反馈并生成个性化的商品列表,以满足用户的特定偏好。在大多数以前的研究中,成对个性化排名技术在经验上比矩阵分解和自适应k最近邻方法具有更好的性能,因为成对排名方法可以直接反映模型用户对商品的排名偏好。在大多数最新工作中,通过使用两个低维潜在因子矩阵学习全局项目相似性的因式项目相似性技术,比其他具有预定义相似性(例如余弦相似性)的最新top-N方法可获得更好的性能。观察项目和未观察项目之间的个人相对偏好假设对于成对排名方法至关重要。作为回应,本文提出了一种新的改进的偏好假设,该假设基于因子项目相似性和个人偏好。另外,设计了一种新颖的推荐算法,对应命名因数相似度和贝叶斯个性化排名模型。该算法的新颖之处在于它可以(1)学习潜在因子模型的全局项相似度。 (2)利用有效的成对排序方法来处理带有隐式反馈的项目推荐问题。 (3)为显式反馈和隐式反馈分配不同的项目权重。实证结果表明,在prec @ 5和ndcg @ 5方面,该模型在两个公共数据集上优于其他最新的top-N推荐方法。可以发现,FSBPR的优势在于它能够利用隐式反馈并捕获全局项目相似性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号