首页> 外文期刊>ACM Transactions on Information Systems >Joint Modeling of User Check-in Behaviors for Real-time Point-of-lnterest Recommendation
【24h】

Joint Modeling of User Check-in Behaviors for Real-time Point-of-lnterest Recommendation

机译:实时兴趣点推荐的用户签到行为的联合建模

获取原文
获取原文并翻译 | 示例

摘要

, to simultaneously discover the semantic, temporal, and spatial patterns of users’ check-in activities, and to model their joint effect on users’ decision making for selection of POIs to visit. To demonstrate the applicability and flexibility of TRM, we investigate how it supports two recommendation scenarios in a unified way, that is, hometown recommendation and out-of-town recommendation. TRM effectively overcomes data sparsity by the complementarity and mutual enhancement of the diverse information associated with users’ check-in activities (e.g., check-in content, time, and location) in the processes of discovering heterogeneous patterns and producing recommendations. To support real-time POI recommendations, we further extend the TRM model to an online learning model, TRM-Online, to track changing user interests and speed up the model training. In addition, based on the learned model, we propose a clustering-based branch and bound algorithm (CBB) to prune the POI search space and facilitate fast retrieval of the top-
机译:,以同时发现用户签到活动的语义,时间和空间模式,并模拟他们对用户决策的共同影响,以选择要访问的POI。为了证明TRM的适用性和灵活性,我们研究了TRM如何以统一的方式支持两种推荐方案,即家乡推荐和城外推荐。 TRM在发现异构模式和生成建议的过程中,通过与用户签到活动(例如,签到内容,时间和位置)相关的各种信息的互补和相互增强,有效地克服了数据稀疏性。为了支持实时POI建议,我们将TRM模型进一步扩展为在线学习模型TRM-Online,以跟踪不断变化的用户兴趣并加快模型训练的速度。此外,基于学习的模型,我们提出了一种基于聚类的分支定界算法(CBB)来修剪POI搜索​​空间并促进对顶部-

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号