首页> 外文期刊>ACM Transactions on Information Systems >Suggesting Points-of-Interest via Content-Based, Collaborative, and Hybrid Fusion Methods in Mobile Devices
【24h】

Suggesting Points-of-Interest via Content-Based, Collaborative, and Hybrid Fusion Methods in Mobile Devices

机译:通过基于内容,协作和混合融合方法在移动设备中建议兴趣点

获取原文
获取原文并翻译 | 示例

摘要

Recommending venues or points-of-interest (POIs) is a hot topic in recent years, especially for tourism applications and mobile users. We propose and evaluate several suggestion methods, taking an effectiveness, feasibility, efficiency and privacy perspective. The task is addressed by two content-based methods (a Weighted kNN classifier and a Rated Rocchio personalized query), Collaborative Filtering methods, as well as several (rank-based or rating-based) methods of merging results of different systems. Effectiveness is evaluated on two standard benchmark datasets, provided and used by TREC's Contextual Suggestion Tracks in 2015 and 2016. First, we enrich these datasets with more information on venues, collected from web services like Foursquare and Yelp; we make this extra data available for future experimentation. Then, we find that the content-based methods provide state-of-the-art effectiveness, the collaborative filtering variants mostly suffer from data sparsity problems in the current datasets, and the merging methods further improve results by mainly promoting the first relevant suggestion. Concerning mobile feasibility, efficiency, and user privacy, the content-based methods, especially Rated Rocchio, are the best. Collaborative filtering has the worst efficiency and privacy leaks. Our findings can be very useful for developing effective and efficient operational systems, respecting user privacy. Last, our experiments indicate that better benchmark datasets would be welcome, and the use of additional evaluation measures-more sensitive in recall-is recommended.
机译:推荐场所或兴趣点(POI)是近年来的热门话题,尤其是对于旅游应用程序和移动用户而言。我们从有效性,可行性,效率和隐私角度出发,提出并评估几种建议方法。该任务通过两种基于内容的方法(加权kNN分类器和Rating Rocchio个性化查询),协作过滤方法以及几种(基于等级或基于等级的)合并不同系统结果的方法来解决。在两个标准基准数据集上评估有效性,该数据集由TREC的“上下文建议跟踪”在2015年和2016年提供和使用。首先,我们通过从Foursquare和Yelp等Web服务收集的场地信息来丰富这些数据集;我们会将这些额外的数据提供给以后的实验。然后,我们发现基于内容的方法提供了最新的有效性,协作过滤变体在当前数据集中大多遭受数据稀疏性的困扰,并且合并方法通过主要促进第一个相关建议而进一步改善了结果。关于移动可行性,效率和用户隐私,基于内容的方法(尤其是Rating Rocchio)是最好的。协作过滤的效率和隐私泄漏最差。我们的发现对于开发有效且高效的操作系统,并尊重用户隐私非常有用。最后,我们的实验表明,欢迎使用更好的基准数据集,并建议使用其他评估措施(对召回更为敏感)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号