首页> 外文期刊>ACM Transactions on Information Systems >Joint Modeling of Participant Influence and Latent Topics for Recommendation in Event-based Social Networks
【24h】

Joint Modeling of Participant Influence and Latent Topics for Recommendation in Event-based Social Networks

机译:基于事件的社交网络中推荐的参与者影响力和潜在主题的联合建模

获取原文
获取原文并翻译 | 示例

摘要

Event-based social networks (EBSNs) are becoming popular in recent years. Users can publish a planned event on an EBSN website, calling for other users to participate in the event. When a user is making a decision on whether to participate in an event in EBSNs, one aspect for consideration is existing participants defined as users who have agreed to join this event. Existing participants of the event may affect the decision of the user, to which we refer as participant influence. However, participant influence is not well studied by previous works. In this article, we propose an event recommendation model that considers participant influence, and exploits the influence of existing participants on the decisions of new participants based on Poisson factorization. The effect of participant influence is associated with the target event, the host group of the event, and the location of the event. Furthermore, our proposed model can extract latent event topics from event text descriptions, and characterize events, groups, and locations by distributions of event topics. Associations between latent event topics and participant influence are exploited for improving event recommendation. Besides making event recommendation, the proposed model is able to reveal the semantic properties of the participant influence between two users semantically. We have conducted extensive experiments on some datasets extracted from a real-world EBSN. Our proposed model achieves superior event recommendation performance over several state-of-the-art models. The results demonstrate that the consideration of participant influence can improve event recommendation.
机译:近年来,基于事件的社交网络(EBSN)变得越来越流行。用户可以在EBSN网站上发布计划的活动,要求其他用户参加该活动。当用户决定是否参加EBSN中的事件时,要考虑的一个方面是现有参与者,定义为同意参加此事件的用户。事件的现有参与者可能会影响用户的决定,我们将其称为参与者影响力。但是,以前的工作并未很好地研究参与者的影响。在本文中,我们提出了一种事件推荐模型,该模型考虑参与者的影响力,并在泊松分解的基础上利用现有参与者对新参与者决策的影响。参与者影响力的影响与目标事件,事件的宿主组以及事件的位置相关。此外,我们提出的模型可以从事件文本描述中提取潜在事件主题,并通过事件主题的分布来表征事件,组和位置。利用潜在事件主题和参与者影响力之间的关联来改进事件推荐。除了提供事件推荐之外,所提出的模型还能够从语义上揭示参与者影响的语义属性。我们已经对从真实EBSN中提取的一些数据集进行了广泛的实验。我们提出的模型在几个最新模型上均具有出色的事件推荐性能。结果表明,考虑参与者的影响可以改善事件的推荐。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号