首页> 外文期刊>ACM Transactions on Graphics >Real-time Pose and Shape Reconstruction of Two Interacting Hands With a Single Depth Camera
【24h】

Real-time Pose and Shape Reconstruction of Two Interacting Hands With a Single Depth Camera

机译:单个深度相机对两只互动手的实时姿势和形状重构

获取原文
获取原文并翻译 | 示例

摘要

We present a novel method for real-time pose and shape reconstruction of two strongly interacting hands. Our approach is the first two-hand tracking solution that combines an extensive list of favorable properties, namely it is marker-less, uses a single consumer-level depth camera, runs in real time, handles inter- and intra-hand collisions, and automatically adjusts to the user's hand shape. In order to achieve this, we embed a recent parametric hand pose and shape model and a dense correspondence predictor based on a deep neural network into a suitable energy minimization framework. For training the correspondence prediction network, we synthesize a two-hand dataset based on physical simulations that includes both hand pose and shape annotations while at the same time avoiding inter-hand penetrations. To achieve real-time rates, we phrase the model fitting in terms of a nonlinear least-squares problem so that the energy can be optimized based on a highly efficient GPU-based Gauss-Newton optimizer. We show state-of-the-art results in scenes that exceed the complexity level demonstrated by previous work, including tight two-hand grasps, significant inter-hand occlusions, and gesture interaction.(1)
机译:我们提出了一种新颖的方法,用于两只强相互作用的手的实时姿势和形状重构。我们的方法是第一个双手跟踪解决方案,该解决方案结合了广泛的有利属性,即无标记,使用单个消费者级别的深度摄像头,实时运行,处理手间和手内碰撞以及自动调整为用户的手形。为了实现这一目标,我们将基于深度神经网络的最新参数化手部姿势和形状模型以及密集的对应预测器嵌入合适的能量最小化框架中。为了训练对应预测网络,我们基于物理模拟合成了一个双手数据集,其中包括手的姿势和形状注释,同时避免了手间的相互渗透。为了获得实时速率,我们用非线性最小二乘问题来表示模型拟合,以便可以基于基于GPU的高效Gauss-Newton优化器来优化能量。我们在超过先前工作证明的复杂性水平的场景中显示了最新的结果,包括紧密的双手抓握,明显的双手间遮挡和手势交互。(1)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号