首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Real-Time Simultaneous Pose and Shape Estimation for Articulated Objects Using a Single Depth Camera
【24h】

Real-Time Simultaneous Pose and Shape Estimation for Articulated Objects Using a Single Depth Camera

机译:使用单个深度相机的关节对象实时同时进行姿势和形状估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present a novel real-time algorithm for simultaneous pose and shape estimation for articulated objects, such as human beings and animals. The key of our pose estimation component is to embed the articulated deformation model with exponential-maps-based parametrization into a Gaussian Mixture Model. Benefiting from this probabilistic measurement model, our algorithm requires no explicit point correspondences as opposed to most existing methods. Consequently, our approach is less sensitive to local minimum and handles fast and complex motions well. Moreover, our novel shape adaptation algorithm based on the same probabilistic model automatically captures the shape of the subjects during the dynamic pose estimation process. The personalized shape model in turn improves the tracking accuracy. Furthermore, we propose novel approaches to use either a mesh model or a sphere-set model as the template for both pose and shape estimation under this unified framework. Extensive evaluations on publicly available data sets demonstrate that our method outperforms most state-of-the-art pose estimation algorithms with large margin, especially in the case of challenging motions. Furthermore, our shape estimation method achieves comparable accuracy with state of the arts, yet requires neither statistical shape model nor extra calibration procedure. Our algorithm is not only accurate but also fast, we have implemented the entire processing pipeline on GPU. It can achieve up to 60 frames per second on a middle-range graphics card.
机译:在本文中,我们提出了一种新颖的实时算法,用于同时对诸如人和动物之类的关节物体进行姿势和形状估计。姿势估计组件的关键是将基于指数映射的参数化关节变形模型嵌入到高斯混合模型中。得益于这种概率测量模型,与大多数现有方法相比,我们的算法不需要明确的点对应关系。因此,我们的方法对局部最小值不太敏感,可以很好地处理快速复杂的运动。而且,我们基于相同概率模型的新颖形状自适应算法会在动态姿势估计过程中自动捕获对象的形状。个性化的形状模型进而提高了跟踪精度。此外,在这种统一框架下,我们提出了一种新颖的方法来使用网格模型或球体模型作为模板进行姿势和形状估计。对可公开获得的数据集的广泛评估表明,我们的方法以较大的幅度优于大多数最新的姿势估计算法,尤其是在具有挑战性的动作中。此外,我们的形状估计方法可达到与现有技术相当的精度,但既不需要统计形状模型,也不需要额外的校准过程。我们的算法不仅准确而且快速,我们已经在GPU上实现了整个处理流程。在中等范围的图形卡上,它可以达到每秒60帧的速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号