首页> 外文期刊>ACM Transactions on Graphics >Bayesian online regression for adaptive direct illumination sampling
【24h】

Bayesian online regression for adaptive direct illumination sampling

机译:贝叶斯在线回归用于自适应直接照明采样

获取原文
获取原文并翻译 | 示例

摘要

Direct illumination calculation is an important component of any physically-based renderer with a substantial impact on the overall performance. We present a novel adaptive solution for unbiased Monte Carlo direct illumination sampling, based on online learning of the light selection probability distributions. Our main contribution is a formulation of the learning process as Bayesian regression, based on a new, specifically designed statistical model of direct illumination. The net result is a set of regularization strategies to prevent over-fitting and ensure robustness even in early stages of calculation, when the observed information is sparse. The regression model captures spatial variation of illumination, which enables aggregating statistics over relatively large scene regions and, in turn, ensures a fast learning rate. We make the method scalable by adopting a light clustering strategy from the Lightcuts method, and further reduce variance through the use of control variates. As a main design feature, the resulting algorithm is virtually free of any preprocessing, which enables its use for interactive progressive rendering, while the online learning still enables super-linear convergence.
机译:直接照明计算是任何基于物理的渲染器的重要组成部分,会对整体性能产生重大影响。我们基于对光选择概率分布的在线学习,提出了一种用于无偏蒙特卡洛直接照明采样的新颖自适应解决方案。我们的主要贡献是基于新设计的直接照明统计模型,将学习过程表述为贝叶斯回归。最终结果是一套正则化策略,以防止过度拟合并确保鲁棒性,即使在计算的早期阶段,即观察到的信息稀疏时也是如此。回归模型捕获照明的空间变化,从而可以汇总相对较大场景区域的统计信息,从而确保快速的学习速度。我们通过采用Lightcuts方法的光聚类策略使该方法具有可扩展性,并通过使用控制变量进一步减少方差。作为一项主要设计功能,所得算法实际上无需任何预处理,因此可以用于交互式渐进式渲染,而在线学习仍然可以实现超线性收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号