首页> 外文期刊>ACM Transactions on Graphics >Robust Task-based Control Policies for Physics-based Characters
【24h】

Robust Task-based Control Policies for Physics-based Characters

机译:基于物理字符的基于任务的鲁棒控制策略

获取原文
获取原文并翻译 | 示例

摘要

We present a method for precomputing robust task-based control policies for physically simulated characters. This allows for characters that can demonstrate skill and purpose in completing a given task; such as walking to a target location; while physically interacting with the environment in significant ways. As input; the method assumes an abstract action vocabulary consisting of balance-aware; step-based controllers. A novel constrained state exploration phase is first used to define a character dynamics model as well as a finite volume of character states over which the control policy will be defined. An optimized control policy is then computed using reinforcement learning. The final policy spans the cross-product of the character state and task state; and is more robust than the conrollers it is constructed from. We demonstrate real-time results for six locomotion-based tasks and on three highly-varied bipedal characters. We further provide a game-scenario demonstration.
机译:我们提出了一种用于为物理模拟角色预先计算基于鲁棒任务的控制策略的方法。这样可以使角色表现出完成给定任务的技巧和目的;例如步行到目标位置;同时以重要方式与环境进行物理交互。作为输入;该方法假设一个抽象的动作词汇由平衡意识组成。基于步进的控制器。首先使用一种新颖的约束状态探索阶段来定义角色动力学模型以及有限数量的角色状态,在这些角色状态上将定义控制策略。然后使用强化学习来计算优化的控制策略。最终策略跨越角色状态和任务状态的叉积;并且比构造它的控制器更强大。我们演示了六个基于运动的任务和三个高度变化的两足动物角色的实时结果。我们还将提供游戏场景演示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号